

GCPy: GEOS-Chem Python toolkit

 About GCPy

About GCPy

GCPy is a Python-based toolkit containing useful functions for
working specifically with the GEOS-Chem model of
atmospheric chemistry and composition.

GCPy aims to build on the well-established scientific
Python technical stack, leveraging tools like cartopy,
numpy, and xarray to simplify the task of
working with GEOS-Chem model output and performing atmospheric
chemistry analyses.

What GCPy was intended to do

	Produce plots and tables from GEOS-Chem [https://geos-chem.readthedocs.io] output using simple function
calls.

	Generate the standard evaluation plots and tables from GEOS-Chem
benchmark simulations.

	Obtain GEOS-Chem’s horizontal and vertical grid information.

	Implement GCHP [https://gchp.readthedocs.io]-specific regridding
functionalities (e.g. cubed-sphere to lat-lon regridding).

	Provide example scripts for creating specific types of plots or
analysis from GEOS-Chem output.

	Provide user-submitted scripts for specific applications related to
GEOS-Chem and HEMCO [https://hemco.readthedocs.io].

What GCPy was not intended to do

	General NetCDF file modification: (crop a domain, extract some variables):

	Instead, use netCDF tools such as:

	xarray [http://xarray.pydata.org]

	netCDF Operators (NCO) [https://nco.sourceforge.net/]

	Climate Data Operators (CDO) [https://mpimet.mpg.de/cdo]

	Also see our Work with netCDF data [https://geos-chem.readthedocs.io/en/latest/geos-chem-shared-docs/supplemental-guides/netcdf-guide.html]
guide at geos-chem.readthedocs.io [https://geos-chem.readthedocs.io].

	Statistical analysis:

	Instead, use statistical tools such as:

	scipy [http://www.scipy.org]

	scikit-learn [https://scikit-learn.org]

	R [https://r-project.org]

	etc.

	Machine Learning:

	Instead, use machine learning tools such as:

	pytorch [https://pytorch.org]

	tensorflow [https://www.tensorflow.org]

	julia [https://julialang.org]

	etc.

License

GCPy is distributed under the MIT license [https://opensource.org/license/mit/]. Please see the GCPy license
agreement [https://github.com/geoschem/gcpy/blob/dev/LICENSE.txt]
and List of GCPy developers [https://github.com/geoschem/gcpy/blob/dev/AUTHORS.txt] for more
information.

Requesting support

To report a bug or suggest a new feature, please see our Support
Guidelines [https://github.com/geoschem/gcpy/blob/dev/SUPPORT.md].

Submitting new features

If you are interested in submitting code to GCPy, please see our
Contributing Guidelines [https://github.com/geoschem/gcpy/blob/dev/CONTRIBUTING.md].

 Installing GCPy

Installing GCPy

Requirements

GCPy is currently supported on the following platforms:

	Linux (x86_64)

	Windows Subsystem for Linux (running in Microsoft Windows 11)

	MacOS

To install GCPy, you will need:

	EITHER a distribution of the Mamba package manager

	OR a distribution of the Conda package manager.

Mamba is a fast drop-in replacement for the
widely-used Conda package manager. We recommend using
Mamba to create a Python environment for GCPy. This
environment will contain a version of the Python interpreter
(in this case, Python 3.9) plus packages upon which GCPy depends.

Note

If your system has an existing Conda installation, and/or
you do not wish to upgrade from Conda to
Mamba, you may create the Python environment for GCPy
with Conda. See the following sections for detailed
instructions.

Check if Mamba is installed

Check if you already have Mamba on your system:

$ mamba --version

If Mamba has been installed, you will see output similar to this:

mamba version X.Y.Z
conda version A.B.C

If you see this output, you may skip ahead to the Install GCPy and its dependencies
section.

Check if Conda is installed

If your system does not have Mamba installed, check if
Conda is already present on your system:

$ conda --version

If a Conda version exists, you will see its version number
printed to the screen:

conda version A.B.C

If neither Conda or Mamba are installed, we
recommend installing the Mamba package manager yourself.
Please proceed to the Install MambaForge section for instructions.

Additional setup for older Conda versions

If your Conda version is earlier than 23.7, you will need
to do the following additional steps.

$ conda install -n base conda-libmamba-solver
$ conda config --set solver libmamba

This will install the fast Mamba environment solver into
your Conda base environment. Using the Mamba
solver within Conda will speed up the Python environment
creation considerably.

Note

The Mamba environment solver is used by default in
Conda 23.7 and later.

You may now skip ahead to the Install GCPy and its dependencies section.

Install MambaForge

We recommend installing the MambaForge, distribution, which
is a full implementation of Mamba (as opposed to the
minimal MicroMamba distribution).

Follow the instructions below to install MambaForge:

MacOS

	Install MambaForge with Homebrew [https://brew.sh/]:

$ brew install mambaforge

	Initialize Mamba for your shell. Type one of the
following commands:

$ mamba init bash # If you use the bash shell (recommended!)
$ mamba init zsh # If you use the zsh shell
$ mamba init fish # If you use the fish shell

Mamba will add some code to your ~/.bash_profile
startup script that will tell your shell where to look for
Python environments.

	Exit your current terminal session and open a new terminal
session. This will apply the changes.

You may now skip ahead to the Install GCPy and its dependencies section.

Linux and Windows Subsystem for Linux

	Download the MambaForge installer script from the
conda-forge GitHub releases page [https://github.com/conda-forge/miniforge/releases]:

$ wget https://github.com/conda-forge/miniforge/releases/download/23.3.1-0/Mambaforge-23.3.1-0-Linux-x86_64.sh

This will download the MambaForge installer script
Mambaforge-23.3.1-0-Linux-x86_64.sh to your computer.

Note

As of this writing (August 2023), the latest
MambaForge version is 23.1.0-0. If you
find that the version has since been updated, simply replace the
version number 23.3.1-0 in the above command with the
most recent version number.

	Change the permission of the MambaForge installer script
so that it is executable.

$ chmod 755 Mambaforge-23.3.1-0-Linux-x86_64.sh

	Execute the Mambaforge installer script.

$./Mambaforge-23.3.1-0-Linux-x86_64.sh

To update an older version of Mamba, add the
-u option to the above command.

	Review and accept the license agreement.

In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue
>>>

Press ENTER and then SPACE until you reach
the end of the license agreement. Then you will be asked:

Do you accept the license terms? [yes|no]
[no] >>>

Type yes and hit ENTER.

	Specify the root installation path for MambaForge.

 Mambaforge will now be installed into this location:
/home/YOUR-USER-NAME/mambaforge

- Press ENTER to confirm the location
- Press CTRL-C to abort the installation
- Or specify a different location below
[/home/YOUR-USER-NAME/mambaforge] >>>

In most cases, it should be OK to accept the default installation
location. But on some systems, users may be encouraged to install
software into a different location (e.g. if there is a faster
filesystem available than the home directory filesystem).
Consult your sysadmin or IT staff if you are unsure where to
install MambaForge.

Press the ENTER key to accept the default installation
path or type a new path and then press ENTER.

:program:`MambaForge` will downlad and install Python software
packages into the :file:`pkgs` subfolder of the root
installation path. Similarly, when you :ref:`create Python
environments <gcpy-install>`, these will be installed to the
:file:`envs` subfolder of the root installation path.

	You may see this warning:

WARNING:
 You currently have a PYTHONPATH environment variable set. This may cause
 unexpected behavior when running the Python interpreter in Mambaforge.
 For best results, please verify that your PYTHONPATH only points to
 directories of packages that are compatible with the Python interpreter
 in Mambaforge: /home/YOUR-USER-NAMEb/mambaforge

As long as your PYTHONPATH environment variable only
contains the path to the root-level GCPy folder, you may safely
ignore this. (More on PYTHONPATH in the next
section.)

	Tell the installer to initialize MambaForge.

Do you wish the installer to initialize Mambaforge
by running conda init? [yes|no]
[no] >>>

Type yes and then ENTER. The installer
script will add some code to your ~/.bashrc system startup
file that will tell your shell where to find Python
environments.

	Exit your current terminal session. Start a new terminal session
to apply the updates. You are now ready to install GCPy.

Install GCPy and its dependencies

Once you have made sure that Mamba (or Conda) is
present on your system, you may create a Python environment for GCPy.
Follow these steps:

	Download the GCPy source code.

Create and go to the directory in which you would like to store GCPy. In
this example we will store GCPy in your $HOME/python/
path, but you can store it wherever you wish. You can also name
the GCPy download whatever you want. In this example the GCPy
directory is called GCPy.

$ cd $HOME/python
$ git clone https://github.com/geoschem/gcpy.git GCPy
$ cd GCPy

	Create a new Python virtual environment for GCPy.

A Python virtual environment is a named set of Python installs,
e.g. packages, that are independent of other virtual
environments. Using an environment dedicated to GCPy is useful to
maintain a set of package dependencies compatible with GCPy without
interfering with Python packages you use for other work. You can
create a Python virtual environment from anywhere on your
system. It will be stored in your Mamba (or
Conda installation rather than the directory from which
you create it).

You can create a Python virtual environment using a file that lists
all packages and their versions to be included in the environment.
GCPy includes such as file, environment.yml, located in the
top-level directory of the package.

Run one of the following commands at the command prompt to create a virtual
environment for use with GCPy. You can name environment whatever you
wish. This example names it gcpy_env.

$ mamba env create -n gcpy_env --file=environment.yml # If using Mamba

$ conda env create -n gcpy_env --file=environment.yml # If using Conda

A list of packages to be downloaded will be displayed. A
confirmation message will ask you if you really wish to install all
of the listed packages. Type Y to proceed or
n to abort.

Once successfully created you can activate the environment with
one of these commands:

$ mamba activate gcpy_env # If using Mamba

$ conda activate gcpy_env # If using Conda

To exit the environment, use one of these commands:

$ mamba deactivate # If using Mamba

$ conda deactivate # If using Conda

	Add GCPy to PYTHONPATH

The environment variable PYTHONPATH specifies the
locations of Python libraries on your system that were not
installed by Mamba.

Add the path to your GCPy source code folder ~/.bashrc file:

export PYTHONPATH=$PYTHONPATH:$HOME/python/GCPy

and then use

$ source ~/.bashrc

to apply the change.

	Set the MPLBACKEND environment variable

The environment variable MPLBACKEND specifies the X11
backend that the Matplotlib package will use to render plots to the
screen.

Add this line to your ~/.bashrc file on your local PC/Mac
and on any remote computer systems where you will use GCPy:

export MPLBACKEND=tkagg

And then use:

$ source ~/.bashrc

to apply the change.

	Perform a simple test:

Run the following commands in your terminal to check if the
installation was succcesful.

$ source $HOME/.bashrc # Alternatively close and reopen your terminal
$ echo $PYTHONPATH # Check it contains path to your GCPy clone
$ mamba activate gcpy_env
$ mamba list # Check it contains contents of gcpy env file
$ python
>>> import gcpy

If no error messages are displayed, you have successfully installed
GCPy and its dependencies.

Upgrading GCPy versions

Sometimes the GCPy dependency list changes with a new GCPy version,
either through the addition of new packages or a change in the minimum
version. You can always update to the latest GCPy version from within
you GCPy clone, and then update your virtual environment using the
environment.yml file included in the package.

Run the following commands to update both your GCPy version to the
latest available.

$ cd $HOME/python/GCPy
$ git fetch -p
$ git checkout main
$ git pull

You can also checkout an older version by doing the following:

$ cd $HOME/python/GCPy
$ git fetch -p
$ git tag
$ git checkout tags/version_you_want

Once you have the version you wish you use you can do the following
commands to then update your virtual environment:

$ mamba activate gcpy_env
$ cd $HOME/python/GCPy
$ mamba env update --file environment.yml --prune

 Overview of Capabilities

Overview of Capabilities

This page outlines the capabilities of GCPy with links to detailed
function documentation.

Spatial plotting

One hallmark of GCPy is easy-to-use spatial plotting of GEOS-Chem
data. Available plotting falls into two layouts: single panel (one map
of one variable from a dataset) and six panel (six maps comparing a
variable between two datasets). The maps in these plots can display
data at a single vertical level of your input dataset or in a zonal
mean for all layers of the atmosphere.

Single panel plots

Single panel plots are generated through the single_panel()
function (located in module gcpy.plot.single_panel). This
function uses Matplotlib and Cartopy plotting capabilities while
handling certain behind the scenes operations that are necessary for
plotting GEOS-Chem data, particularly for cubed-sphere and/or zonal
mean data.

import xarray as xr
import matplotlib.pyplot as plt
from gcpy.plot.single_panel import single_panel

Read data
ds = xr.open_dataset(
 'GEOSChem.Restart.20160701_0000z.nc4'
)

Plot surface Ozone over the North Pacific
single_panel(
 ds['SpeciesRst_O3'].isel(lev=0),
 title='Surface Ozone over the North Pacific',
 extent=[80, -90, -10, 60]
)
plt.show()

[image: _images/single_panel_single_level.png]
Plot global zonal mean of Ozone
single_panel(
 ds['SpeciesRst_O3'],
 plot_type='zonal_mean',
 title='Global Zonal Mean of Ozone'
)
plt.show()

[image: _images/single_panel_zonal_mean.png]
Click here for an example single panel plotting script.
Click here for detailed documentation for
single_panel().

Six-panel comparison plots

Six-panel plots are used to compare results across two different model
runs. Single level and zonal mean plotting options are both available.
The two model runs do not need to be the same resolution or even the
same grid type (GEOS-Chem Classic and GCHP output can be mixed at will).

import xarray as xr
import matplotlib.pyplot as plt
from gcpy.plot.compare_single_level import compare_single_level
from gcpy.plot.compare_zonal_mean import compare_zonal_mean

Read data
gcc_ds = xr.open_dataset(
 'GEOSChem.SpeciesConc.20160701_0000z.nc4'
)
gchp_ds = xr.open_dataset(
 'GCHP.SpeciesConc.20160716_1200z.nc4'
)

Plot comparison of surface ozone over the North Pacific
compare_single_level(
 gcc_ds,
 'GEOS-Chem Classic',
 gchp_ds,
 'GCHP',
 varlist=['SpeciesConc_O3'],
 extra_title_txt='Surface'
)
plt.show()

[image: _images/six_panel_single_level.png]
Plot comparison of global zonal mean ozone
compare_zonal_mean(
 gcc_ds,
 'GEOS-Chem Classic',
 gchp_ds,
 'GCHP',
 varlist=['SpeciesConc_O3']
)
plt.show()

[image: _images/six_panel_zonal_mean.png]
Click here for an example six panel plotting
script. Click here for complete documentation
for compare_single_level() and compare_zonal_mean().

Comprehensive benchmark plotting

The GEOS-Chem Support Team uses comprehensive plotting functions from
module gcpy.benchmark_funcs to generate full plots of benchmark
diagnostics. Functions like
gcpy.benchmark_funcs.make_benchmark_conc_plots() by default create plots for every variable
in a given collection (e.g. SpeciesConc) at multiple
vertical levels (surface, 500hPa, zonal mean) and divide plots into
separate folders based on category (e.g. Chlorine, Aerosols). The
GEOS-Chem Support Team uses benchmark plotting and tabling table
scripts (described in our Benchmarking chapter) to
produce plots and tables for official model benchmarks.

Table creation

GCPy has several dedicated functions for tabling GEOS-Chem output data
in text file format. These functions and their outputs are primarily
used for model benchmarking purposes.

Budget tables

Currently, budget tables can be created for “operations” (table shows
change in mass after each category of model operation, as contained in
the GEOS-Chem Budget diagnostics) or in overall averages for
different aerosols or the Transport Tracers simulation.

Operations budget tables are created using the
gcpy.benchmark_funcs.make_benchmark_operations_budget() function and appear as follows:

[image: _images/budget_table.png]

Mass tables

The gcpy.benchmark_funcs.make_benchmark_mass_tables() function uses species concentrations and info
from meteorology files to generate the total mass of species in
certain segments of the atmosphere (currently global or only the
troposphere). An example table is shown below:

[image: _images/mass_table.png]

Emissions tables

The gcpy.benchmark_funcs.make_benchmark_emis_tables() function creates tables of total emissions
categorized by species or by inventory. Examples of both emissions
table types are shown below:

[image: _images/emissions_totals.png]
[image: _images/inventory_totals.png]

Regridding

General regridding rules

GCPy supports regridding between all horizontal GEOS-Chem grid types,
including latitude/longitude grids (the grid format of GEOS-Chem Classic),
standard cubed-sphere (the standard grid format of GCHP), and
stretched-grid (an optional grid format in GCHP). GCPy contains
several horizontal regridding functions built off of xESMF. GCPy
automatically handles most regridding needs when plotting GEOS-Chem
data.

gcpy.file_regrid() allows you to regrid
GEOS-Chem Classic and GCHP files between different grid resolutions
and can be called from the command line or as a function.

gcpy.regrid_restart_file allows you to regrid
GCHP files between between different grid resolutions and grid
types (standard and stretched cubed-sphere grids), and can be
called from the command line.

The 72-level and 47-level vertical grids are pre-defined in
GCPy. Other vertical grids can also be defined if you provide the A
and B coefficients of the hybrid vertical grid.

When plotting data of differing grid types or horizontal resolutions
using compare_single_level()
or compare_zonal_mean(), you
can specify a comparison resolution using the cmpres
argument. This resolution will be used for the difference panels in
each plot (the bottom four panels rather than the top two raw data
panels). If you do not specify a comparison resolution, GCPy will
automatically choose one.

For more extensive regridding information, visit the detailed
regridding documentation.

 Plotting

Plotting

This page describes in depth the general plotting capabilities of GCPy,
including possible argument values for every plotting function.

For information about GCPy functions that are specific to the
GEOS-Chem benchmark workflow, please see our Benchmarking
chapter.

Six-panel comparison plots

The functions listed below generate six-panel plots comparing
variables between two datasets:

	Plotting function

	Located in GCPy module

	compare_single_level()

	gcpy.plot.compare_single_level

	compare_zonal_mean()

	gcpy.plot.compare_zonal_mean

Both compare_single_level() and compare_zonal_mean()
generate a six panel plot for each variable passed. These plots can
either be saved to PDFs or generated sequentially for visualization in
the Matplotlib GUI using matplotlib.pyplot.show().
Each plot uses data passed from a reference (Ref) dataset
and a development (Dev) dataset. Both functions share
significant structural overlap both in output appearance and code
implementation.

You can import these routines into your code with these statements:

from gcpy.plot.compare_single_level import compare_single_level
from gcpy.plot.compare_zonal_mean import compare_zonal_mean

Each panel has a title describing the type of panel, a colorbar for
the values plotted in that panel, and the units of the data plotted in
that panel. The upper two panels of each plot show actual values from
the Ref (left) and Dev (right) datasets for a
given variable. The middle two panels show the difference
(Dev - Ref) between the values in the Dev
dataset and the values in the Ref dataset. The left middle
panel uses a full dynamic color map, while the right middle panel caps
the color map at the 5th and 95th percentiles. The bottom two panels
show the ratio (Dev/Ref) between the values in the Dev
dataset and the values in the Ref Dataset. The left bottom panel uses
a full dynamic color map, while the right bottom panel caps the color
map at 0.5 and 2.0.

Function compare_single_level

The compare_single_level function accepts takes the following
arguments:

def compare_single_level(
 refdata,
 refstr,
 devdata,
 devstr,
 varlist=None,
 ilev=0,
 itime=0,
 refmet=None,
 devmet=None,
 weightsdir='.',
 pdfname="",
 cmpres=None,
 match_cbar=True,
 normalize_by_area=False,
 enforce_units=True,
 convert_to_ugm3=False,
 flip_ref=False,
 flip_dev=False,
 use_cmap_RdBu=False,
 verbose=False,
 log_color_scale=False,
 extra_title_txt=None,
 extent=None,
 n_job=-1,
 sigdiff_list=None,
 second_ref=None,
 second_dev=None,
 spcdb_dir=os.path.dirname(__file__),
 sg_ref_path='',
 sg_dev_path='',
 ll_plot_func='imshow',
 **extra_plot_args
):
 """
 Create single-level 3x2 comparison map plots for variables common
 in two xarray Datasets. Optionally save to PDF.

 Args:
 refdata: xarray dataset
 Dataset used as reference in comparison
 refstr: str
 String description for reference data to be used in plots
 devdata: xarray dataset
 Dataset used as development in comparison
 devstr: str
 String description for development data to be used in plots

 Keyword Args (optional):
 varlist: list of strings
 List of xarray dataset variable names to make plots for
 Default value: None (will compare all common variables)
 ilev: integer
 Dataset level dimension index using 0-based system.
 Indexing is ambiguous when plotting differing vertical grids
 Default value: 0
 itime: integer
 Dataset time dimension index using 0-based system
 Default value: 0
 refmet: xarray dataset
 Dataset containing ref meteorology
 Default value: None
 devmet: xarray dataset
 Dataset containing dev meteorology
 Default value: None
 weightsdir: str
 Directory path for storing regridding weights
 Default value: None (will create/store weights in
 current directory)
 pdfname: str
 File path to save plots as PDF
 Default value: Empty string (will not create PDF)
 cmpres: str
 String description of grid resolution at which
 to compare datasets
 Default value: None (will compare at highest resolution
 of ref and dev)
 match_cbar: bool
 Set this flag to True if you wish to use the same colorbar
 bounds for the Ref and Dev plots.
 Default value: True
 normalize_by_area: bool
 Set this flag to True if you wish to normalize the Ref
 and Dev raw data by grid area. Input ref and dev datasets
 must include AREA variable in m2 if normalizing by area.
 Default value: False
 enforce_units: bool
 Set this flag to True to force an error if Ref and Dev
 variables have different units.
 Default value: True
 convert_to_ugm3: bool
 Whether to convert data units to ug/m3 for plotting.
 Default value: False
 flip_ref: bool
 Set this flag to True to flip the vertical dimension of
 3D variables in the Ref dataset.
 Default value: False
 flip_dev: bool
 Set this flag to True to flip the vertical dimension of
 3D variables in the Dev dataset.
 Default value: False
 use_cmap_RdBu: bool
 Set this flag to True to use a blue-white-red colormap
 for plotting the raw data in both the Ref and Dev datasets.
 Default value: False
 verbose: bool
 Set this flag to True to enable informative printout.
 Default value: False
 log_color_scale: bool
 Set this flag to True to plot data (not diffs)
 on a log color scale.
 Default value: False
 extra_title_txt: str
 Specifies extra text (e.g. a date string such as "Jan2016")
 for the top-of-plot title.
 Default value: None
 extent: list
 Defines the extent of the region to be plotted in form
 [minlon, maxlon, minlat, maxlat].
 Default value plots extent of input grids.
 Default value: [-1000, -1000, -1000, -1000]
 n_job: int
 Defines the number of simultaneous workers for parallel
 plotting. Set to 1 to disable parallel plotting.
 Value of -1 allows the application to decide.
 Default value: -1
 sigdiff_list: list of str
 Returns a list of all quantities having significant
 differences (where |max(fractional difference)| > 0.1).
 Default value: None
 second_ref: xarray Dataset
 A dataset of the same model type / grid as refdata,
 to be used in diff-of-diffs plotting.
 Default value: None
 second_dev: xarray Dataset
 A dataset of the same model type / grid as devdata,
 to be used in diff-of-diffs plotting.
 Default value: None
 spcdb_dir: str
 Directory containing species_database.yml file.
 Default value: Path of GCPy code repository
 sg_ref_path: str
 Path to NetCDF file containing stretched-grid info
 (in attributes) for the ref dataset
 Default value: '' (will not be read in)
 sg_dev_path: str
 Path to NetCDF file containing stretched-grid info
 (in attributes) for the dev dataset
 Default value: '' (will not be read in)
 ll_plot_func: str
 Function to use for lat/lon single level plotting with
 possible values 'imshow' and 'pcolormesh'. imshow is much
 faster but is slightly displaced when plotting from
 dateline to dateline and/or pole to pole.
 Default value: 'imshow'
 extra_plot_args: various
 Any extra keyword arguments are passed through the
 plotting functions to be used in calls to pcolormesh() (CS)
 or imshow() (Lat/Lon).
"""

and generates a comparison plot such as:

[image: _images/six_panel_single_level.png]

Function compare_zonal_mean

def compare_zonal_mean(
 refdata,
 refstr,
 devdata,
 devstr,
 varlist=None,
 itime=0,
 refmet=None,
 devmet=None,
 weightsdir='.',
 pdfname="",
 cmpres=None,
 match_cbar=True,
 pres_range=None,
 normalize_by_area=False,
 enforce_units=True,
 convert_to_ugm3=False,
 flip_ref=False,
 flip_dev=False,
 use_cmap_RdBu=False,
 verbose=False,
 log_color_scale=False,
 log_yaxis=False,
 extra_title_txt=None,
 n_job=-1,
 sigdiff_list=None,
 second_ref=None,
 second_dev=None,
 spcdb_dir=os.path.dirname(__file__),
 sg_ref_path='',
 sg_dev_path='',
 ref_vert_params=None,
 dev_vert_params=None,
 **extra_plot_args
):
 """
 Creates 3x2 comparison zonal-mean plots for variables
 common in two xarray Datasets. Optionally save to PDF.

 Args:
 refdata: xarray dataset
 Dataset used as reference in comparison
 refstr: str
 String description for reference data to be used in plots
 devdata: xarray dataset
 Dataset used as development in comparison
 devstr: str
 String description for development data to be used in plots

 Keyword Args (optional):
 varlist: list of strings
 List of xarray dataset variable names to make plots for
 Default value: None (will compare all common 3D variables)
 itime: integer
 Dataset time dimension index using 0-based system
 Default value: 0
 refmet: xarray dataset
 Dataset containing ref meteorology
 Default value: None
 devmet: xarray dataset
 Dataset containing dev meteorology
 Default value: None
 weightsdir: str
 Directory path for storing regridding weights
 Default value: None (will create/store weights in
 current directory)
 pdfname: str
 File path to save plots as PDF
 Default value: Empty string (will not create PDF)
 cmpres: str
 String description of grid resolution at which
 to compare datasets
 Default value: None (will compare at highest resolution
 of Ref and Dev)
 match_cbar: bool
 Set this flag to True to use same the colorbar bounds
 for both Ref and Dev plots.
 Default value: True
 pres_range: list of two integers
 Pressure range of levels to plot [hPa]. The vertical axis
 will span the outer pressure edges of levels that contain
 pres_range endpoints.
 Default value: [0, 2000]
 normalize_by_area: bool
 Set this flag to True to to normalize raw data in both
 Ref and Dev datasets by grid area. Input ref and dev
 datasets must include AREA variable in m2 if normalizing
 by area.
 Default value: False
 enforce_units: bool
 Set this flag to True force an error if the variables in
 the Ref and Dev datasets have different units.
 Default value: True
 convert_to_ugm3: str
 Whether to convert data units to ug/m3 for plotting.
 Default value: False
 flip_ref: bool
 Set this flag to True to flip the vertical dimension of
 3D variables in the Ref dataset.
 Default value: False
 flip_dev: bool
 Set this flag to True to flip the vertical dimension of
 3D variables in the Dev dataset.
 Default value: False
 use_cmap_RdBu: bool
 Set this flag to True to use a blue-white-red colormap for
 plotting raw reference and development datasets.
 Default value: False
 verbose: logical
 Set this flag to True to enable informative printout.
 Default value: False
 log_color_scale: bool
 Set this flag to True to enable plotting data (not diffs)
 on a log color scale.
 Default value: False
 log_yaxis: bool
 Set this flag to True if you wish to create zonal mean
 plots with a log-pressure Y-axis.
 Default value: False
 extra_title_txt: str
 Specifies extra text (e.g. a date string such as "Jan2016")
 for the top-of-plot title.
 Default value: None
 n_job: int
 Defines the number of simultaneous workers for parallel
 plotting. Set to 1 to disable parallel plotting.
 Value of -1 allows the application to decide.
 Default value: -1
 sigdiff_list: list of str
 Returns a list of all quantities having significant
 differences (where |max(fractional difference)| > 0.1).
 Default value: None
 second_ref: xarray Dataset
 A dataset of the same model type / grid as refdata,
 to be used in diff-of-diffs plotting.
 Default value: None
 second_dev: xarray Dataset
 A dataset of the same model type / grid as devdata,
 to be used in diff-of-diffs plotting.
 Default value: None
 spcdb_dir: str
 Directory containing species_database.yml file.
 Default value: Path of GCPy code repository
 sg_ref_path: str
 Path to NetCDF file containing stretched-grid info
 (in attributes) for the ref dataset
 Default value: '' (will not be read in)
 sg_dev_path: str
 Path to NetCDF file containing stretched-grid info
 (in attributes) for the dev dataset
 Default value: '' (will not be read in)
 ref_vert_params: list(AP, BP) of list-like types
 Hybrid grid parameter A in hPa and B (unitless).
 Needed if ref grid is not 47 or 72 levels.
 Default value: None
 dev_vert_params: list(AP, BP) of list-like types
 Hybrid grid parameter A in hPa and B (unitless).
 Needed if dev grid is not 47 or 72 levels.
 Default value: None
 extra_plot_args: various
 Any extra keyword arguments are passed through the
 plotting functions to be used in calls to pcolormesh()
 (CS) or imshow() (Lat/Lon).
 """

and generates a comparison plot such as:

[image: _images/six_panel_zonal_mean.png]

Shared structure

Both compare_single_level() and compare_zonal_mean()
have four positional (required) arguments.

	
refdata : xarray.Dataset

	Dataset used as reference in comparison

	
refstr : str OR list of str

	String description for reference data to be used in plots OR list
containing [ref1str, ref2str] for diff-of-diffs plots

	
devdata : xarray.Dataset

	Dataset used as development in comparison

	
devstr : str OR list of str

	String description for development data to be used in plots
OR list containing [dev1str, dev2str] for diff-of-diffs plots

refstr and devstr title the top two panels of
each six panel plot.

Functions compare_single_level() and
compare_zonal_mean() share many arguments. Some of these
arguments are plotting options that change the format of the plots:

For example, you may wish to convert units to ug/m3 when
generating comparison plots of aerosol species. Activate this
option by setting the keyword argument convert_to_ugm3=True.

Other arguments are necessary to achieve a correct plot depending on
the format of refdata and devdata and require
you to know certain traits of your input data. For example, you must
specify if one of the datasets should be flipped vertically if Z
coordinates in that dataset do not denote decreasing pressure as Z
index increases, otherwise the vertical coordinates between your two
datasets may be misaligned and result in an undesired plotting
outcome. This may be done with by setting the boolean options
flip_ref=True and/or flip_dev=True.

The n_job argument governs the parallel plotting settings
of compare_single_level() and compare_zonal_mean() .
GCPy uses the JobLib library to create plots in parallel. Due to
limitations with matplotlib, this parallelization creates plots
(pages) in parallel rather than individual panels on a single
page. Parallel plot creation is not enabled when you do not save to a
PDF. The default value of n_job=-1 allows the function call
to automatically scale up to, at most, the number of cores available
on your system.

Note

On systems with higher (12+) core counts, the maximum number of
cores is not typically reached because of the process handling
mechanics of JobLib. However, on lower-end systems with lower core
counts or less available memory, it is advantageous to use
n_job to limit the max number of processes.

Due to how Python handles memory management on Linux systems, using
more cores may result in memory not returned to the system after
the plots are created. Requesting fewer cores with
n_job may help to avoid this situation.

Example script

Here is a basic script that calls both compare_zonal_mean() and
compare_single_level():

#!/usr/bin/env python

import xarray as xr
import matplotlib.pyplot as plt
from gcpy.plot.compare_single_level import compare_single_level
from gcpy.plot.compare_zonal_mean import compare_zonal_mean

file1 = '/path/to/ref'
file2 = '/path/to/dev'
ds1 = xr.open_dataset(file1)
ds2 = xr.open_dataset(file2)
compare_zonal_mean(ds1, 'Ref run', ds2, 'Dev run')
plt.show()
compare_single_level(ds1, 'Ref run', ds2, 'Dev run')
plt.show()

Single panel plots

Function single_panel() (contained in GCPy module
gcpy.plot.single_panel) is used to create plots containing
only one panel of GEOS-Chem data. This function is used within
compare_single_level() and compare_zonal_mean() to
generate each panel plot. It can also be called directly on its
own to quickly plot GEOS-Chem data in zonal mean or single level
format.

Function: single_panel

Function single_panel() accepts the following arguments:

def single_panel(
 plot_vals,
 ax=None,
 plot_type="single_level",
 grid=None,
 gridtype="",
 title="fill",
 comap=WhGrYlRd,
 norm=None,
 unit="",
 extent=None,
 masked_data=None,
 use_cmap_RdBu=False,
 log_color_scale=False,
 add_cb=True,
 pres_range=None,
 pedge=np.full((1, 1), -1),
 pedge_ind=np.full((1, 1), -1),
 log_yaxis=False,
 xtick_positions=None,
 xticklabels=None,
 proj=ccrs.PlateCarree(),
 sg_path='',
 ll_plot_func="imshow",
 vert_params=None,
 pdfname="",
 weightsdir='.',
 vmin=None,
 vmax=None,
 return_list_of_plots=False,
 **extra_plot_args
):
 """
 Core plotting routine -- creates a single plot panel.

 Args:
 plot_vals: xarray.DataArray, numpy.ndarray, or dask.array.Array
 Single data variable GEOS-Chem output to plot

 Keyword Args (Optional):
 ax: matplotlib axes
 Axes object to plot information
 Default value: None (Will create a new axes)
 plot_type: str
 Either "single_level" or "zonal_mean"
 Default value: "single_level"
 grid: dict
 Dictionary mapping plot_vals to plottable coordinates
 Default value: {} (will attempt to read grid from plot_vals)
 gridtype: str
 "ll" for lat/lon or "cs" for cubed-sphere
 Default value: "" (will automatically determine from grid)
 title: str
 Title to put at top of plot
 Default value: "fill" (will use name attribute of plot_vals
 if available)
 comap: matplotlib Colormap
 Colormap for plotting data values
 Default value: WhGrYlRd
 norm: list
 List with range [0..1] normalizing color range for matplotlib
 methods. Default value: None (will determine from plot_vals)
 unit: str
 Units of plotted data
 Default value: "" (will use units attribute of plot_vals
 if available)
 extent: tuple (minlon, maxlon, minlat, maxlat)
 Describes minimum and maximum latitude and longitude of input
 data. Default value: None (Will use full extent of plot_vals
 if plot is single level).
 masked_data: numpy array
 Masked area for avoiding near-dateline cubed-sphere plotting
 issues Default value: None (will attempt to determine from
 plot_vals)
 use_cmap_RdBu: bool
 Set this flag to True to use a blue-white-red colormap
 Default value: False
 log_color_scale: bool
 Set this flag to True to use a log-scale colormap
 Default value: False
 add_cb: bool
 Set this flag to True to add a colorbar to the plot
 Default value: True
 pres_range: list(int)
 Range from minimum to maximum pressure for zonal mean
 plotting. Default value: [0, 2000] (will plot entire
 atmosphere)
 pedge: numpy array
 Edge pressures of vertical grid cells in plot_vals
 for zonal mean plotting. Default value: np.full((1, 1), -1)
 (will determine automatically)
 pedge_ind: numpy array
 Index of edge pressure values within pressure range in
 plot_vals for zonal mean plotting.
 Default value: np.full((1, 1), -1) (will determine
 automatically)
 log_yaxis: bool
 Set this flag to True to enable log scaling of pressure in
 zonal mean plots. Default value: False
 xtick_positions: list(float)
 Locations of lat/lon or lon ticks on plot
 Default value: None (will place automatically for
 zonal mean plots)
 xticklabels: list(str)
 Labels for lat/lon ticks
 Default value: None (will determine automatically from
 xtick_positions)
 proj: cartopy projection
 Projection for plotting data
 Default value: ccrs.PlateCarree()
 sg_path: str
 Path to NetCDF file containing stretched-grid info
 (in attributes) for plot_vals.
 Default value: '' (will not be read in)
 ll_plot_func: str
 Function to use for lat/lon single level plotting with
 possible values 'imshow' and 'pcolormesh'. imshow is much
 faster but is slightly displaced when plotting from dateline
 to dateline and/or pole to pole. Default value: 'imshow'
 vert_params: list(AP, BP) of list-like types
 Hybrid grid parameter A in hPa and B (unitless). Needed if
 grid is not 47 or 72 levels. Default value: None
 pdfname: str
 File path to save plots as PDF
 Default value: "" (will not create PDF)
 weightsdir: str
 Directory path for storing regridding weights
 Default value: "." (will store regridding files in
 current directory)
 vmin: float
 minimum for colorbars
 Default value: None (will use plot value minimum)
 vmax: float
 maximum for colorbars
 Default value: None (will use plot value maximum)
 return_list_of_plots: bool
 Return plots as a list. This is helpful if you are using
 a cubedsphere grid and would like access to all 6 plots
 Default value: False
 extra_plot_args: various
 Any extra keyword arguments are passed to calls to
 pcolormesh() (CS) or imshow() (Lat/Lon).

 Returns:
 plot: matplotlib plot
 Plot object created from input
 """

Function single_panel() expects data with a 1-length (or
non-existent) T (time) dimension, as well as a
1-length or non-existent Z (vertical level) dimension.

single_panel() contains a few amenities to help with plotting
GEOS-Chem data, including automatic grid detection for lat/lon or
standard cubed-sphere xarray DataArray-s. You can also pass NumPy
arrays to plot, though you’ll need to manually pass grid info in this
case (with the gridtype, pedge, and
pedge_ind keyword arguments).

The sample script shown below shows how you can data at a single level and
timestep from an xarray.DataArray object.

#!/usr/bin/env python

import xarray as xr
import matplotlib.pyplot as plt
from gcpy.plot.single_panel import single_panel

Read data from a file into an xr.Dataset object
dset = xr.open_dataset('GEOSChem.SpeciesConc.20160701_0000z.nc4')

Extract ozone (v/v) from the xr.Dataset object,
for time=0 (aka first timestep) and lev=0 (aka surface)
sfc_o3 = dset['SpeciesConcVV_O3'].isel(time=0).isel(lev=0)

Plot the data!
single_panel(sfc_o3)
plt.show()

 Regridding

Regridding

GCPy currently supports regridding of data from:

	GEOS-Chem Classic restart files

	GEOS-Chem Classic diagnostic files

	GCHP restart files

	GCHP diagnostic files

	HEMCO restart files

	HEMCO diagnostic files

	As well as any netCDF file adhering to COARDS [https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions]
or CF [https://cfconventions.org/] conventions.

Regridding is supported across any horizontal resolution and any grid
type available in GEOS-Chem, including lat/lon (global or non-global),
global standard cubed-sphere, and global stretched-grid. GCPy also
supports arbitrary vertical regridding across different vertical
resolutions.

Regridding with GCPy is currently undergoing an overhaul. As of the
current release, regridding is split into two different
categories:

	Regridding between lat-lon grids using regridding weights computed
on the fly by GCPy, and

	Regridding either lat-lon or cubed-sphere using regridding weights
computed as a preprocessing step.

The latter method may be used for creating GCHP standard grid
and stretched grid restart files from either GCHP or GEOS-Chem Classic
restart files.

Using Online Regridding Weights

You can regrid existing GEOS-Chem restart or diagnostic files using
GCPy function gcpy.file_regrid. This function can called
directly from the command line (see the examples below) or from a Python script or
interpreter (gcpy.file_regrid.file_regrid())

Note

For regridding to or from GCHP stretched-grid restart files, we
recommend using the offline regridding weights method.

The syntax of file_regrid is as follows:

def file_regrid(
 fin,
 fout,
 dim_format_in,
 dim_format_out,
 cs_res_out=0,
 ll_res_out='0x0',
 sg_params_in=None,
 sg_params_out=None,
 vert_params_out=None,
):
 """
 Regrids an input file to a new horizontal grid specification
 and saves it as a new file.
 """

gcpy.file_regrid required arguments:

	
fin : str

	The input filename

	
fout : str

	The output filename (file will be overwritten if it already exists)

	
dim_format_in : str

	Format of the input file’s dimensions. Accepted values are:

	classic: For GEOS-Chem Classic restart & diagnostic files

	checkpoint : For GCHP checkpoint & restart files

	diagnostic: For GCHP diagnostic files

	
dim_format_out : str

	Format of the output file’s dimensions. Accepted values are:

	classic: For GEOS-Chem Classic restart & diagnostic files

	checkpoint : For GCHP checkpoint & restart files

	diagnostic: For GCHP diagnostic files

gcpy.file_regrid optional arguments:

	
sg_params_in : list of float

	Stretching parameters (stretch-factor,
target-longitude, target-latitude) for the
input grid. Only needed when the data contained in file
fin is on a GCHP stretched grid.

Default value: [1.0, 170.0, -90.0]

	
sg_params_out : list of float

	Stretching parameters (stretch-factor,
target-longitude, target-latitude) for the
output grid. Only needed when the data to be contained in file
fout is to be placed on a GCHP stretched grid.

Default value: [1.0, 170.0, -90.0]

	
cs_res_out : int

	Cubed-sphere resolution of the output dataset. Only needed when
the data in file fin is on a GCHP cubed-sphere grid.

Default value: 0

	
ll_res_out : str

	The lat/lon resolution of the output dataset. Only needed when
the data to be contained in file fout is to be placed
on a GEOS-Chem Classic lat-lon grid.

Default value: "0x0".

	
vert_params_out : list of float

	Hybrid grid parameter \(A\) (in hPa and \(B\)
(unitless), returned in list format: [A, B]

Default value: None

Examples

As stated previously, you can call
gcpy.file_regrid.file_regrid() from a Python script, or from
the command line. Here we shall focus on command-line examples.

	Regrid a 4x5 GEOS-Chem Classic restart or diagnostic file to a
GEOS-Chem Classic 2x2.5 file:

$ python -m gcpy.file_regrid \
 --filein /path/to/file_4x5.nc4 \
 --dim_format_in classic \
 --fileout /path/to/file_2x25.nc4 \
 --ll_res_out 2x2.5 \
 --dim_format_out classic

	Regrid a 4x5 GEOS-Chem Classic restart or diagnostic file to a
GCHP C24 restart file:

$ python -m gcpy.file_regrid \
 --filein /path/to/file_4x5.nc4 \
 --dim_format_in classic \
 --fileout /path/to/file_c24.nc4 \
 --cs_res_out 24 \
 --dim_format_out checkpoint

	Regrid a GCHP C48 restart file to a GCHP stretched grid C48 restart
file. The stretch parameters are:

	stretch-factor: 5

	target-longitude: -72

	target-latitude: 41

$ python -m gcpy.file_regrid \
 --filein /path/to/file_c48.nc4 \
 --dim_format_in checkpoint \
 --fileout /path/to/file_c48_sg.nc4 \
 --cs_res_out 48 \
 --dim_format_out checkpoint \
 --sg_params_out 5 -72 41

	Regrid the GCHP stretched grid C48 restart file from Example 3
above to a GCHP C24 diagnostic file.

$ python -m gcpy.file_regrid \
 --filein /path/to/file_c48_sg.nc4 \
 --sg_params_in 5 -72 41 \
 --dim_format_in checkpoint \
 --fileout /path/to/file_c24.nc4 \
 --cs_res_out 24 \
 --dim_format_out diagnostic

Using Offline Regridding Weights

This approach requires generating regridding weights using python
packages gridspec [https://github.com/liambindle/gridspec] and
sparselt [https://github.com/liambindle/sparselt]. Regridding with
GCPy, gridspec and sparselt is a
three stage process:

	Create grid specifications for the source and target grids using
gridspec.

	Create regridding weights for the transformation using
ESMF_RegridWeightGen.

	Run the regridding operation using the regrid_restart_file
submodule of GCPy.

Note

As of GCPy 1.4.0, the default GCPy environment (aka gcpy_env) now contains
gridspec and sparselt packages. You no
longer need to use the separate gchp_regridding
environment as in prior versions.

gcpy.regrid_restart_file required arguments:

There are three arguments required by the GCPy function
regrid_restart_file:

	
file_to_regrid : str

	The GEOS-Chem Classic or GCHP data file to be regridded.

	
regridding_weights_file : str

	Regridding weights to be used in the regridding transformation,
generated by ESMF_RegridWeightGen

	
template_file : str

	The GC-Classic or GCHP restart file to use as a template for the
regridded restart file. Attributes, dimensions, and variables
for the output file will be taken from this template.

gcpy.regrid_restart_file optional arguments:

There are four optional arguments, all of which are for regridded to a
stretched cubed-sphere grid.

	
--stretched-grid : switch

	A switch to indicate that the target grid is a stretched
cubed-sphere grid.

	
--stretch-factor : float

	The grid stretching factor for the target stretched grid. Only
takes effect when --stretched-grid is set. See the
GCHP documentation [https://gchp.readthedocs.io/en/latest/supplement/stretched-grid.html#choose-stretching-parameters]
for more information. Make sure this value exactly matches the
value you plan to use in GCHP configuration file
setCommonRunSettings.sh.

	
--target-latitude : float

	The latitude of the centre point for stretching the target
grid. Only takes effect when --stretched-grid is
set. See the GCHP documentation [https://gchp.readthedocs.io/en/latest/supplement/stretched-grid.html#choose-stretching-parameters]
for more information. Make sure this value exactly matches the
value you plan to use in GCHP configuration file
setCommonRunSettings.sh.

	
--target-longitude : float

	The longitude of the centre point for stretching the target
grid. Only takes effect when --stretched-grid is
set. See the GCHP documentation [https://gchp.readthedocs.io/en/latest/supplement/stretched-grid.html#choose-stretching-parameters]
for more information. Make sure this value exactly matches the
value you plan to use in GCHP configuration file
setCommonRunSettings.sh.

Example 1: Standard Lat-Lon to Cubed-Sphere Regridding

This example will show regridding a GC-Classic 4x5 restart file to a
GCHP c24 restart file.

	Activate your GCPy environment.

$ mamba activate gcpy_env # Or whatever your environment's name is

	Create a lat-lon source grid specification using
gridspec-create.

$ gridspec-create latlon --pole-centered --half-polar 46 72

This will produce 1 file: regular_lat_lon_46x72.nc.

	Create a target grid specification using gridspec-create.

$ gridspec-create gcs 24

This will produce 7 files: c24_gridspec.nc and
c24.tile[1-6].nc

	Create the regridding weights for the regridding transformation
(46x72 to C24) using ESMF_RegridWeightGen.

$ ESMF_RegridWeightGen \
 --source regular_lat_lon_46x72.nc \
 --destination c24_gridspec.nc \
 --method conserve \
 --weight 46x72_to_c24_weights.nc

This will produce a log file, PET0.RegridWeightGen.Log, and our
regridding weights, 46x72_to_c24_weights.nc

	Use the grid weights produced in previous steps to complete the
regridding.

$ python -m gcpy.regrid_restart_file \
 GEOSChem.Restart.20190701_0000z.nc4 \
 46x72_to_c24_weights.nc \
 GEOSChem.Restart.20190701_0000z.c24_old.nc4

The arguments to gcpy.regrid_restart_file
are described above. In this example
(lat-lon to cubed-sphere) we need to use a GEOS-Chem Classic
restart file as the file to be regridded and a GCHP restart file as
the template file.

Note

The resolution of the template file does not matter as long as it
contains all of the variables and attributes that you wish to
include in the regridded restart file.

After running gcpy.regrid_restart_file, a single restart file
named new_restart_file.nc will be created. You can rename
this file and use it to initialize your GCHP C24 simulation.

	Deactivate your GCPy environment when finished.

$ mamba deactivate

Example 2: Standard Cubed-Sphere to Cubed-Sphere Regridding

We will use the example of regridding the out-of-the-box
GEOSChem.Restart.20190701_0000z.c48.nc4 restart file from
C48 to C60 to demonstrate the standard cubed-sphere regridding process:

	Activate your GCPy environment.

$ mamba activate gcpy_env # Or whatever your environment's name is

	Create a source grid specification using gridspec-create.

$ gridspec-create gcs 48

This will produce 7 files: c48_gridspec.nc and
c48.tile[1-6].nc

	Create a target grid specification using gridspec-create.

$ gridspec-create gcs 60

Again, this will produce 7 files: c60_gridspec.nc and
c60.tile[1-6].nc

	Create the regridding weights for the regridding transformation
(C48 to C60) using ESMF_RegridWeightGen.

$ ESMF_RegridWeightGen \
 --source c48_gridspec.nc \
 --destination c60_gridspec.nc \
 --method conserve \
 --weight c48_to_c60_weights.nc

This will produce a log file, PET0.RegridWeightGen.Log,
and our regridding weights, c48_to_c60_weights.nc

	Use the grid weights produced in earlier steps to complete the regridding.

$ python -m gcpy.regrid_restart_file \
 GEOSChem.Restart.20190701_0000z.c48.nc4 \
 c48_to_c60_weights.nc \
 GEOSChem.Restart.20190701_0000z.c48.nc4

The arguments to gcpy.regrid_restart_file
are described above. Because we are
regridding from one cubed-sphere grid to another cubed-sphere grid,
we can use the file to be regridded as the template file.

After running gcpy.regrid_restart_file, a single restart
file named new_restart_file.nc will be created. You can
rename this file as you wish and use it for your GCHP C60
simulation.

	Deactivate your GCPy environment when you have finished.

$ mamba deactivate

Example 3: Standard to Stretched Cubed-Sphere Regridding

This example regrids the out-of-the-box c48 restart file
(GEOSChem.Restart.20190701_0000z.c48.nc4) from a standard
cubed-sphere grid to a stretched grid. The base resolution will remain
the same at c48. The regridded file will have a stretch factor of 4.0
over Bermuda which means a regional grid resolution of c196 (4
times 48) in that area.

	Activate your GCPy environment:

$ mamba activate gcpy_env # Or whatever your environment's name is

	Create a source grid specification using gridspec-create.

$ gridspec-create gcs 48

This will produce 7 files: c48_gridspec.nc and
c48.tile[1-6].nc

	Create a target grid specification using gridspec-create.
This will be for the stretched grid.

$ gridspec-create sgcs 48 -s 4.0 -t 32.0 -64.0

Here, the -s option denotes the stretch factor and the
-t option denotes the latitude / longitude of the centre
point of the grid stretch.

Again, this will produce 7 files: c48_..._gridspec.nc and
c48_..._tile[1-6].nc, where ... denotes randomly
generated characters. Be sure to look for these since you will need
them in the next step.

	Create the regridding weights for the regridding transformation
(C48 to C48-stretched) using ESMF_RegridWeightGen,
replacing c48_..._gridspec.nc with the actual name of the
file created in the previous step. An example is shown below.

$ ESMF_RegridWeightGen \
 --source c48_gridspec.nc \
 --destination c48_s4d00_tdtdqp9ktebm5_gridspec.nc \
 --method conserve \
 --weight c48_to_c48_stretched_weights.nc

This will produce a log file, PET0.RegridWeightGen.Log, and our
regridding weights, c48_to_c48_stretched_weights.nc

	Use the grid weights produced in earlier steps to complete the
regridding.

$ python -m gcpy.regrid_restart_file \
 --stretched-grid \
 --stretch-factor 4.0 \
 --target-latitude 32.0 \
 --target-longitude -64.0 \
 GEOSChem.Restart.20190701_0000z.c48.nc4 \
 c48_to_c48_stretched_weights.nc \
 GEOSChem.Restart.20190701_0000z.c48.nc4

The arguments to gcpy.regrid_restart_file
are described above. Because we are
regridding from one cubed-sphere grid to another cubed-sphere grid,
we can use the file to be regridded as the template file.

This will produce a single file, new_restart_file.nc,
regridded from C48 standard to C48 stretched with a stretch factor
of 4.0 over 32.0N, -64.0E, that you can rename and use as you
please.

Tip

It is generally a good idea to rename the file to include
the grid resolution, stretch factor, and target lat/lon for easy
reference. You can copy it somewhere to keep long-term and link to
it from the GCHP Restarts subdirectory in the run directory.

$ mv new_restart_file.nc GEOSChem.Restart.20190701_0000z.c120.s4_32N_64E.nc

You can also easily reference the file’s stretch parameters by
looking at the global attributes in the file. When using the
file as a restart file in GCHP make sure that you use the exact
same parameters in both the file’s global attributes and GCHP
configuration file setCommonRunSettings.sh.

	Deactivate your GCPy environment when you have finished.

$ mamba deactivate

Regridding for Plotting in GCPy

When plotting in GCPy (e.g. through
gcpy.compare_single_level() or
gcpy.compare_zonal_mean()), the vast majority of regridding is
handled internally. You can optionally request a specific horizontal
comparison resolution in compare_single_level() and
compare_zonal_mean(). Note that all regridding in these
plotting functions only applies to the comparison panels (not
the top two panels which show data directly from each dataset). There
are only two scenarios where you will need to pass extra information
to GCPy to help it determine grids and to regrid when plotting.

Pass stretched-grid file paths

Stretched-grid parameters cannot currently be automatically determined
from grid coordinates. If you are plotting stretched-grid data in
gcpy.compare_single_level() or
gcpy.compare_zonal_mean() (even if regridding to another
format), you need to use the sg_ref_path or
sg_dev_path arguments to pass the path of your original
stretched-grid restart file to GCPy. If using single_panel(),
pass the file path using sg_path. Stretched-grid restart files
created using GCPy contain the specified stretch factor, target
longitude, and target latitude in their metadata. Currently, output
files from stretched-grid runs of GCHP do not contain any metadata
that specifies the stretched-grid used.

Pass vertical grid parameters for non-72/47-level grids

GCPy automatically handles regridding between different vertical grids
when plotting except when you pass a dataset that is not on the
typical 72-level or 47-level vertical grids. If using a different
vertical grid, you will need to pass the corresponding grid
parameters [http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_vertical_grids#Reference_section_for_vertical_grids]
using the ref_vert_params or dev_vert_params keyword
arguments.

Automatic regridding decision process

When you do not specify a horizontal comparison resolution using the
cmpres argument in gcpy.compare_single_level() and
compare_zonal_mean(), GCPy follows several steps to determine
what comparison resolution it should use:

	If both input grids are lat/lon, use the highest resolution between
them (don’t regrid if they are the same resolution).

	Else if one grid is lat/lon and the other is cubed-sphere (standard
or stretched-grid), use a 1x1.25 lat/lon grid.

	Else if both grids are cubed-sphere and you are plotting zonal
means, use a 1x1.25 lat/lon grid.

	Else if both grids are standard cubed-sphere, use the highest
resolution between them (don’t regrid if they are the same
resolution).

	Else if one or more grids is a stretched-grid, use the grid of the
ref dataset.

For differing vertical grids, the smaller vertical grid is currently
used for comparisons.

 Benchmarking

Benchmarking

The GEOS-Chem Support Team uses GCPy to produce comparison plots and
summary tables from GEOS-Chem benchmark simulations. In this chapter
we will describe this capability of GCPy.

Location of benchmark plotting scripts

The source code for creating benchmark plots is located in the
gcpy/benchmark directory tree.

Contents of the gcpy/benchmark directory

	File or folder

	Description

	run_benchmark.py

	Benchmark driver script

	benchmark_slurm.sh

	Bash script to submit run_benchmark,py
as a SLURM batch job

	cloud/

	Directory containing template config files
(in YAML format) for 1-hour and 1-month
benchmark plot jobs on the AWS cloud.

	config/

	Directory containing editable config files
(in YAML format) for 1-month and 1-year
benchmark plot jobs.

	__init__.py

	Python import script

	modules/

	Contains Python modules imported into the
run_benchmark.py script.

	README.md

	Readme file in Markdown format

Note

As of this writing, the benchmarking scripts still use several
plotting and tabling functions from module
gcpy.benchmark_funcs. We are currently in the process of
moving the functions contained in gcpy.benchmark_funcs to
the gcpy/benchmark/modules directory.

Steps to create benchmark plots

Follow these instructions to create comparison plots and summary
tables from GEOS-Chem benchmark simulations.

	Copy a configuration file from the gcpy/benchmark/config
directory.

In this example we will use the configuration file that will create
plots from 1-year full-chemistry benchmark
simulations. (Configuration files for other benchmark types have a
similar layout.)

$ cp /path/to/GCPy/gcpy/benchmark/config/1yr_fullchem_benchmark.yml .

	Edit the paths section of the configuration file to
specify the proper directory paths for your system.

Configuration for 1-year FullChemBenchmark
#
paths:
main_dir: High-level directory containing ref & dev rundirs
results_dir: Directory where plots/tables will be created
weights_dir: Path to regridding weights
spcdb_dir: Folder in which the species_database.yml file is
located. If set to "default", then will look for
species_database.yml in one of the Dev rundirs.
obs_data_dir: Path to observational data (for models vs obs plots)
#
paths:
 main_dir: /path/to/benchmark/main/dir # EDIT AS NEEDED
 results_dir: /path/to/BenchmarkResults # EDIT AS NEEDED
 weights_dir: /n/holyscratch01/external_repos/GEOS-CHEM/gcgrid/data/ExtData/GCHP/RegriddingWeights
 spcdb_dir: default
 obs_data_dir: /path/to/observational/data

	Edit the data section to specify the directories (and
labels) for the Ref and Dev versions for GEOS-Chem Classic and GCHP.

#
data: Contains configurations for ref and dev runs
version: Version string (must not contain spaces)
dir: Path to run directory
outputs_subdir: Subdirectory w/ GEOS-Chem diagnostic files
restarts_subdir: Subdirectory w/ GEOS-Chem restarts
bmk_start: Simulation start date (YYYY-MM-DDThh:mm:ss)
bmk_end: Simulation end date (YYYY-MM-DDThh:mm:ss)
resolution: GCHP resolution string
#
data:
 ref:
 gcc:
 version: GCC_ref
 dir: GCC_ref
 outputs_subdir: OutputDir
 restarts_subdir: Restarts
 bmk_start: "2019-01-01T00:00:00"
 bmk_end: "2020-01-01T00:00:00"
 gchp:
 version: GCC_dev
 dir: GCC_dev
 outputs_subdir: OutputDir
 restarts_subdir: Restarts
 bmk_start: "2019-01-01T00:00:00"
 bmk_end: "2020-01-01T00:00:00"
 is_pre_14.0: False
 resolution: c24
 dev:
 gcc:
 version: GCC_dev
 dir: GCC_dev
 outputs_subdir: OutputDir
 restarts_subdir: Restarts
 bmk_start: "2019-01-01T00:00:00"
 bmk_end: "2020-01-01T00:00:00"
 gchp:
 version: GCC_dev
 dir: GCC_dev
 restarts_subdir: Restarts
 bmk_start: "2019-01-01T00:00:00"
 bmk_end: "2020-01-01T00:00:00"
 is_pre_14.0: False
 resolution: c24

	Edit the comparisons section to specify the types of
comparisons you would like to perform.

#
comparisons: Specifies the comparisons to perform.
#
comparisons:
 gcc_vs_gcc:
 run: True
 dir: GCC_version_comparison
 tables_subdir: Tables
 gchp_vs_gcc:
 run: True
 dir: GCHP_GCC_comparison
 tables_subdir: Tables
 gchp_vs_gchp:
 run: True
 dir: GCHP_version_comparison
 tables_subdir: Tables
 gchp_vs_gcc_diff_of_diffs:
 run: True
 dir: GCHP_GCC_diff_of_diffs

	Edit the outputs section to select the plots and tables
that you would like to generate.

#
outputs: Specifies the plots and tables to generate
#
outputs:
 plot_conc: True
 plot_emis: True
 emis_table: True
 plot_jvalues: True
 plot_aod: True
 mass_table: True
 ops_budget_table: False
 aer_budget_table: True
 Ox_budget_table: True
 ste_table: True # GCC only
 OH_metrics: True
 plot_models_vs_obs: True
 plot_options:
 by_spc_cat: True
 by_hco_cat: True

	Edit the n_cores setting if you wish to change the
number of computational cores to use. If not, leave
n_cores set to -1, which will use as many
cores as possible.

#
n_cores: Specify the number of cores to use.
-1: Use $OMP_NUM_THREADS cores
-2: Use $OMP_NUM_THREADS - 1 cores
-N: Use $OMP_NUM_THREADS - (N-1) cores
1: Disable parallelization (use a single core)
#
n_cores: -1

	Run the run.benchmark.py script. You may do this in 2
ways:

	Direct execution from the command line:

(gcpy_env) $ python -m gcpy.benchmark.run_benchmark
1yr_fullchem_benchmark.yml

	Batch execution with the SLURM scheduler. First, copy the
benchmark_slurm.sh script to your current directory:

(gcpy_env) $ cp /path/to/GCPy/gcpy/benchmark/benchmark_slurm.sh .

Next, edit your local copy of benchmark_slurm.sh to
specify your SLURM partition name, number of cores, the name of
your Python environment and the configuration file to use.

#!/bin/bash

#SBATCH -c 8
#SBATCH -N 1
#SBATCH -t 0-4:00
#SBATCH -p seas_compute,shared
#SBATCH --mem=100000
#SBATCH --mail-type=END

#==
This us a sample SLURM script that you can use to run the GCPy
benchmark plotting code as a SLURM batch job.
#
You can modify the SLURM parameters above for your setup.
#
Tip: Using less cores can reduce the amount of memory required.
#==

Apply all bash initialization settings
. ~/.bashrc

Make sure to set multiple threads; Joblib will use multiple
cores to parallelize certain plotting operations.
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
export OMP_STACKSIZE=500m

Turn on Python environment (edit for your setup)
mamba activate gcpy_env

Specify a YAML file with benchmark options
Uncomment the file that you wish:
#config="1mo_benchmark.yml"
config="1yr_fullchem_benchmark.yml"
#config="1yr_tt_benchmark.yml"

Call the run_benchmark script to make the plots
python -m gcpy.benchmark.run_benchmark "${config}" > benchmark.log 2>&1

Turn off python environment
mamba deactivate

exit 0

Lastly, start the SLURM batch execution with this command:

$ sbatch benchmark_slurm.sh

Benchmark plotting functions

Module gcpy.benchmark_funcs contains several functions for
creating plots and tables from GEOS-Chem benchmark simulations. The
specific outputs generated have been requested by the GEOS-Chem
Steering Committee [https://geoschem.github.io/steering-cmte] in
order to facilitate comparing benchmark output from different model
versions.

In this section, we will describe functions that create comparison
plots from GEOS-Chem benchmark simulation output. The functions to
create summary tables will be described in a separate section.

Note

We are working towards moving all benchmark-related source code to
the gcpy/benchmark/ directory tree. For the time being,
the benchmark_funcs.py script is located in the
/path/to/GCPy/gcpy/ directory.

Functions creating comparison plots from benchmark
 simulation output

	Function

	Type of 6-panel comparison plot created

	make_benchmark_aod_plots()

	Comparison plots for aerosol optical depth

	make_benchmark_conc_plots()

	Species concentration

	make_benchmark_emis_plots()

	Emissions (by species and catgegory)

	make_benchmark_jvalue_plots()

	Comparison plots for J-values (photolysis)

	make_benchmark_wetdep_plots()

	Comparison plots for species wet deposition

The functions listed above create comparison plots of most GEOS-Chem
output variables divided into specific categories, e.g. species
categories such as Aerosols or Bromine for the
SpeciesConcVV diagnostic. In eachcategory, these function
create single level PDFs for the surface and 500hPa and zonal
mean PDFs for the entire atmosphere and only the stratosphere (defined
a 1-100hPa). For make_benchmark_emis_plots(), only single
level plots at the surface are produced. All of these plotting
functions include bookmarks within the generated PDFs that point to
the pages containing each plotted quantity. Thus these functions serve
as tools for quickly creating comprehensive plots comparing two
GEOS-Chem runs. These functions are used to create the publicly
available plots for 1-month and 1-year benchmarks of new versions of
GEOS-Chem.

Many of the plotting functions listed above use pre-defined lists of
variables in YAML files. If one dataset includes a variable but the
other dataset does not, the data for that variable in the latter
dataset will be considered to be NaN and will be plotted as such.

make_benchmark_aod_plots

This function creates column optical depth plots using the Aerosols
diagnostic output.

def make_benchmark_aod_plots(
 ref,
 refstr,
 dev,
 devstr,
 varlist=None,
 dst="./benchmark",
 subdst=None,
 cmpres=None,
 overwrite=False,
 verbose=False,
 log_color_scale=False,
 sigdiff_files=None,
 weightsdir='.',
 n_job=-1,
 time_mean=False,
 spcdb_dir=os.path.dirname(__file__)
):
 """
 Creates PDF files containing plots of column aerosol optical
 depths (AODs) for model benchmarking purposes.

 Args:
 ref: str
 Path name for the "Ref" (aka "Reference") data set.
 refstr: str
 A string to describe ref (e.g. version number)
 dev: str
 Path name for the "Dev" (aka "Development") data set.
 This data set will be compared against the "Reference"
 data set.
 devstr: str
 A string to describe dev (e.g. version number)

 Keyword Args (optional):
 varlist: list of str
 List of AOD variables to plot. If not passed, then all
 AOD variables common to both Dev and Ref will be plotted.
 Use the varlist argument to restrict the number of
 variables plotted to the pdf file when debugging.
 Default value: None
 dst: str
 A string denoting the destination folder where a
 PDF file containing plots will be written.
 Default value: ./benchmark.
 subdst: str
 A string denoting the sub-directory of dst where PDF
 files containing plots will be written. In practice,
 subdst is only needed for the 1-year benchmark output,
 and denotes a date string (such as "Jan2016") that
 corresponds to the month that is being plotted.
 Default value: None
 cmpres: string
 Grid resolution at which to compare ref and dev data, e.g. '1x1.25'
 overwrite: bool
 Set this flag to True to overwrite files in the
 destination folder (specified by the dst argument).
 Default value: False.
 verbose: bool
 Set this flag to True to print extra informational output.
 Default value: False
 log_color_scale: bool
 Set this flag to True to enable plotting data (not diffs)
 on a log color scale.
 Default value: False
 sigdiff_files: list of str
 Filenames that will contain the list of quantities having
 having significant differences in the column AOD plots.
 These lists are needed in order to fill out the benchmark
 approval forms.
 Default value: None
 weightsdir: str
 Directory in which to place (and possibly reuse) xESMF regridder
 netCDF files.
 Default value: '.'
 n_job: int
 Defines the number of simultaneous workers for parallel plotting.
 Set to 1 to disable parallel plotting. Value of -1 allows the
 application to decide.
 Default value: -1
 spcdb_dir: str
 Directory of species_datbase.yml file
 Default value: Directory of GCPy code repository
 time_mean : bool
 Determines if we should average the datasets over time
 Default value: False
 """

make_benchmark_conc_plots

This function creates species concentration plots using the
SpeciesConc diagnostic output by default. In particular:

	This function is the only benchmark plotting function that supports
diff-of-diffs plotting, in which 4 datasets are passed and the
differences between two groups of Ref datasets vs. two
groups of Dev datasets is plotted (typically used for
comparing changes in GCHP vs. changes in GEOS-Chem Classic across
model versions).

	This is also the only benchmark plotting function that sends plots
to separate folders based on category (as denoted by the
plot_by_spc_cat flag). The full list of species categories is
denoted in benchmark_categories.yml [https://github.com/geoschem/gcpy/blob/dev/gcpy/benchmark_categories.yml]
(included in GCPy).

	In this function, parallelization occurs at the species category
level. In all other functions, parallelization occurs within calls
to compare_single_level() and compare_zonal_mean().=

def make_benchmark_conc_plots(
 ref,
 refstr,
 dev,
 devstr,
 dst="./benchmark",
 subdst=None,
 overwrite=False,
 verbose=False,
 collection="SpeciesConc",
 benchmark_type="FullChemBenchmark",
 cmpres=None,
 plot_by_spc_cat=True,
 restrict_cats=[],
 plots=["sfc", "500hpa", "zonalmean"],
 use_cmap_RdBu=False,
 log_color_scale=False,
 sigdiff_files=None,
 normalize_by_area=False,
 cats_in_ugm3=["Aerosols", "Secondary_Organic_Aerosols"],
 areas=None,
 refmet=None,
 devmet=None,
 weightsdir='.',
 n_job=-1,
 second_ref=None,
 second_dev=None,
 time_mean=False,
 spcdb_dir=os.path.dirname(__file__)
):
 """
 Creates PDF files containing plots of species concentration
 for model benchmarking purposes.

 Args:
 ref: str
 Path name for the "Ref" (aka "Reference") data set.
 refstr: str
 A string to describe ref (e.g. version number)
 dev: str
 Path name for the "Dev" (aka "Development") data set.
 This data set will be compared against the "Reference"
 data set.
 devstr: str
 A string to describe dev (e.g. version number)

 Keyword Args (optional):
 dst: str
 A string denoting the destination folder where a PDF
 file containing plots will be written.
 Default value: ./benchmark
 subdst: str
 A string denoting the sub-directory of dst where PDF
 files containing plots will be written. In practice,
 subdst is only needed for the 1-year benchmark output,
 and denotes a date string (such as "Jan2016") that
 corresponds to the month that is being plotted.
 Default value: None
 overwrite: bool
 Set this flag to True to overwrite files in the
 destination folder (specified by the dst argument).
 Default value: False
 verbose: bool
 Set this flag to True to print extra informational output.
 Default value: False
 collection: str
 Name of collection to use for plotting.
 Default value: "SpeciesConc"
 benchmark_type: str
 A string denoting the type of benchmark output to plot, options are
 FullChemBenchmark, TransportTracersBenchmark, or CH4Benchmark.
 Default value: "FullChemBenchmark"
 cmpres: string
 Grid resolution at which to compare ref and dev data, e.g. '1x1.25'
 plot_by_spc_cat: logical
 Set this flag to False to send plots to one file rather
 than separate file per category.
 Default value: True
 restrict_cats: list of strings
 List of benchmark categories in benchmark_categories.yml to make
 plots for. If empty, plots are made for all categories.
 Default value: empty
 plots: list of strings
 List of plot types to create.
 Default value: ['sfc', '500hpa', 'zonalmean']
 log_color_scale: bool
 Set this flag to True to enable plotting data (not diffs)
 on a log color scale.
 Default value: False
 normalize_by_area: bool
 Set this flag to true to enable normalization of data
 by surfacea area (i.e. kg s-1 --> kg s-1 m-2).
 Default value: False
 cats_in_ugm3: list of str
 List of benchmark categories to to convert to ug/m3
 Default value: ["Aerosols", "Secondary_Organic_Aerosols"]
 areas: dict of xarray DataArray:
 Grid box surface areas in m2 on Ref and Dev grids.
 Default value: None
 refmet: str
 Path name for ref meteorology
 Default value: None
 devmet: str
 Path name for dev meteorology
 Default value: None
 sigdiff_files: list of str
 Filenames that will contain the lists of species having
 significant differences in the 'sfc', '500hpa', and
 'zonalmean' plots. These lists are needed in order to
 fill out the benchmark approval forms.
 Default value: None
 weightsdir: str
 Directory in which to place (and possibly reuse) xESMF regridder
 netCDF files.
 Default value: '.'
 n_job: int
 Defines the number of simultaneous workers for parallel plotting.
 Set to 1 to disable parallel plotting. Value of -1 allows the
 application to decide.
 Default value: -1
 second_ref: str
 Path name for a second "Ref" (aka "Reference") data set for
 diff-of-diffs plotting. This dataset should have the same model
 type and grid as ref.
 Default value: None
 second_dev: str
 Path name for a second "Ref" (aka "Reference") data set for
 diff-of-diffs plotting. This dataset should have the same model
 type and grid as ref.
 Default value: None
 spcdb_dir: str
 Directory of species_datbase.yml file
 Default value: Directory of GCPy code repository
 time_mean : bool
 Determines if we should average the datasets over time
 Default value: False
 """

make_benchmark_emis_plots

This function generates plots of total emissions using output from
HEMCO_diagnostics.* (for GEOS-Chem Classic) and/or
GCHP.Emissions.* output files.

def make_benchmark_emis_plots(
 ref,
 refstr,
 dev,
 devstr,
 dst="./benchmark",
 subdst=None,
 plot_by_spc_cat=False,
 plot_by_hco_cat=False,
 benchmark_type="FullChemBenchmark",
 cmpres=None,
 overwrite=False,
 verbose=False,
 flip_ref=False,
 flip_dev=False,
 log_color_scale=False,
 sigdiff_files=None,
 weightsdir='.',
 n_job=-1,
 time_mean=False,
 spcdb_dir=os.path.dirname(__file__)
):
 """
 Creates PDF files containing plots of emissions for model
 benchmarking purposes. This function is compatible with benchmark
 simulation output only. It is not compatible with transport tracers
 emissions diagnostics.

 Args:
 ref: str
 Path name for the "Ref" (aka "Reference") data set.
 refstr: str
 A string to describe ref (e.g. version number)
 dev: str
 Path name for the "Dev" (aka "Development") data set.
 This data set will be compared against the "Reference"
 data set.
 devstr: str
 A string to describe dev (e.g. version number)

 Keyword Args (optional):
 dst: str
 A string denoting the destination folder where
 PDF files containing plots will be written.
 Default value: './benchmark
 subdst: str
 A string denoting the sub-directory of dst where PDF
 files containing plots will be written. In practice,
 and denotes a date string (such as "Jan2016") that
 corresponds to the month that is being plotted.
 Default value: None
 plot_by_spc_cat: bool
 Set this flag to True to separate plots into PDF files
 according to the benchmark species categories (e.g. Oxidants,
 Aerosols, Nitrogen, etc.) These categories are specified
 in the YAML file benchmark_species.yml.
 Default value: False
 plot_by_hco_cat: bool
 Set this flag to True to separate plots into PDF files
 according to HEMCO emissions categories (e.g. Anthro,
 Aircraft, Bioburn, etc.)
 Default value: False
 benchmark_type: str
 A string denoting the type of benchmark output to plot, options are
 FullChemBenchmark, TransportTracersBenchmark, or CH4Benchmark.
 Default value: "FullChemBenchmark"
 cmpres: string
 Grid resolution at which to compare ref and dev data, e.g. '1x1.25'
 overwrite: bool
 Set this flag to True to overwrite files in the
 destination folder (specified by the dst argument).
 Default value: False
 verbose: bool
 Set this flag to True to print extra informational output.
 Default value: False
 flip_ref: bool
 Set this flag to True to reverse the vertical level
 ordering in the "Ref" dataset (in case "Ref" starts
 from the top of atmosphere instead of the surface).
 Default value: False
 flip_dev: bool
 Set this flag to True to reverse the vertical level
 ordering in the "Dev" dataset (in case "Dev" starts
 from the top of atmosphere instead of the surface).
 Default value: False
 log_color_scale: bool
 Set this flag to True to enable plotting data (not diffs)
 on a log color scale.
 Default value: False
 sigdiff_files: list of str
 Filenames that will contain the lists of species having
 significant differences in the 'sfc', '500hpa', and
 'zonalmean' plots. These lists are needed in order to
 fill out the benchmark approval forms.
 Default value: None
 weightsdir: str
 Directory in which to place (and possibly reuse) xESMF regridder
 netCDF files.
 Default value: '.'
 n_job: int
 Defines the number of simultaneous workers for parallel plotting.
 Set to 1 to disable parallel plotting.
 Value of -1 allows the application to decide.
 Default value: -1
 spcdb_dir: str
 Directory of species_datbase.yml file
 Default value: Directory of GCPy code repository
 time_mean : bool
 Determines if we should average the datasets over time
 Default value: False

 Remarks:
 (1) If both plot_by_spc_cat and plot_by_hco_cat are
 False, then all emission plots will be placed into the
 same PDF file.

 (2) Emissions that are 3-dimensional will be plotted as
 column sums.
 column sums.
"""

make_benchmark_jvalue_plots

This function generates plots of J-values using the JValues
GEOS-Chem output files.

def make_benchmark_jvalue_plots(
 ref,
 refstr,
 dev,
 devstr,
 varlist=None,
 dst="./benchmark",
 subdst=None,
 local_noon_jvalues=False,
 cmpres=None,
 plots=["sfc", "500hpa", "zonalmean"],
 overwrite=False,
 verbose=False,
 flip_ref=False,
 flip_dev=False,
 log_color_scale=False,
 sigdiff_files=None,
 weightsdir='.',
 n_job=-1,
 time_mean=False,
 spcdb_dir=os.path.dirname(__file__)
):
 """
 Creates PDF files containing plots of J-values for model
 benchmarking purposes.

 Args:
 ref: str
 Path name for the "Ref" (aka "Reference") data set.
 refstr: str
 A string to describe ref (e.g. version number)
 dev: str
 Path name for the "Dev" (aka "Development") data set.
 This data set will be compared against the "Reference"
 data set.
 devstr: str
 A string to describe dev (e.g. version number)

 Keyword Args (optional):
 varlist: list of str
 List of J-value variables to plot. If not passed,
 then all J-value variables common to both dev
 and ref will be plotted. The varlist argument can be
 a useful way of restricting the number of variables
 plotted to the pdf file when debugging.
 Default value: None
 dst: str
 A string denoting the destination folder where a
 PDF file containing plots will be written.
 Default value: ./benchmark.
 subdst: str
 A string denoting the sub-directory of dst where PDF
 files containing plots will be written. In practice,
 subdst is only needed for the 1-year benchmark output,
 and denotes a date string (such as "Jan2016") that
 corresponds to the month that is being plotted.
 Default value: None
 local_noon_jvalues: bool
 Set this flag to plot local noon J-values. This will
 divide all J-value variables by the JNoonFrac counter,
 which is the fraction of the time that it was local noon
 at each location.
 Default value: False
 cmpres: string
 Grid resolution at which to compare ref and dev data, e.g. '1x1.25'
 plots: list of strings
 List of plot types to create.
 Default value: ['sfc', '500hpa', 'zonalmean']
 overwrite: bool
 Set this flag to True to overwrite files in the
 destination folder (specified by the dst argument).
 Default value: False.
 verbose: bool
 Set this flag to True to print extra informational output.
 Default value: False
 flip_ref: bool
 Set this flag to True to reverse the vertical level
 ordering in the "Ref" dataset (in case "Ref" starts
 from the top of atmosphere instead of the surface).
 Default value: False
 flip_dev: bool
 Set this flag to True to reverse the vertical level
 ordering in the "Dev" dataset (in case "Dev" starts
 from the top of atmosphere instead of the surface).
 Default value: False
 log_color_scale: bool
 Set this flag to True if you wish to enable plotting data
 (not diffs) on a log color scale.
 Default value: False
 sigdiff_files: list of str
 Filenames that will contain the lists of J-values having
 significant differences in the 'sfc', '500hpa', and
 'zonalmean' plots. These lists are needed in order to
 fill out the benchmark approval forms.
 Default value: None
 weightsdir: str
 Directory in which to place (and possibly reuse) xESMF regridder
 netCDF files.
 Default value: '.'
 n_job: int
 Defines the number of simultaneous workers for parallel plotting.
 Set to 1 to disable parallel plotting. Value of -1 allows the
 application to decide.
 Default value: -1
 spcdb_dir: str
 Directory of species_datbase.yml file
 Default value: Directory of GCPy code repository
 time_mean : bool
 Determines if we should average the datasets over time
 Default value: False

 Remarks:
 Will create 4 files containing J-value plots:
 (1) Surface values
 (2) 500 hPa values
 (3a) Full-column zonal mean values.
 (3b) Stratospheric zonal mean values
 These can be toggled on/off with the plots keyword argument.

 At present, we do not yet have the capability to split the
 plots up into separate files per category (e.g. Oxidants,
 Aerosols, etc.). This is primarily due to the fact that
 we archive J-values from GEOS-Chem for individual species
 but not family species. We could attempt to add this
 functionality later if there is sufficient demand.
 """

make_benchmark_wetdep_plots

This function generates plots of wet deposition using
WetLossConv and WetLossLS GEOS-Chem output files.
It is currently primarily used for 1-Year Transport Tracer benchmarks,
plotting values for the following species as defined in
benchmark_categories.yml [https://github.com/geoschem/gcpy/blob/dev/gcpy/benchmark_categories.yml]
(included in GCPY).

def make_benchmark_wetdep_plots(
 ref,
 refstr,
 dev,
 devstr,
 collection,
 dst="./benchmark",
 cmpres=None,
 datestr=None,
 overwrite=False,
 verbose=False,
 benchmark_type="TransportTracersBenchmark",
 plots=["sfc", "500hpa", "zonalmean"],
 log_color_scale=False,
 normalize_by_area=False,
 areas=None,
 refmet=None,
 devmet=None,
 weightsdir='.',
 n_job=-1,
 time_mean=False,
 spcdb_dir=os.path.dirname(__file__)
):
 """
 Creates PDF files containing plots of species concentration
 for model benchmarking purposes.

 Args:
 ref: str
 Path name for the "Ref" (aka "Reference") data set.
 refstr: str
 A string to describe ref (e.g. version number)
 dev: str
 Path name for the "Dev" (aka "Development") data set.
 This data set will be compared against the "Reference"
 data set.
 devstr: str
 A string to describe dev (e.g. version number)
 collection: str
 String name of collection to plot comparisons for.

 Keyword Args (optional):
 dst: str
 A string denoting the destination folder where a PDF
 file containing plots will be written.
 Default value: ./benchmark
 datestr: str
 A string with date information to be included in both the
 plot pdf filename and as a destination folder subdirectory
 for writing plots
 Default value: None
 benchmark_type: str
 A string denoting the type of benchmark output to plot, options are
 FullChemBenchmark, TransportTracersBenchmark, or CH4Benchmark.
 Default value: "FullChemBenchmark"
 overwrite: bool
 Set this flag to True to overwrite files in the
 destination folder (specified by the dst argument).
 Default value: False.
 verbose: bool
 Set this flag to True to print extra informational output.
 Default value: False.
 plots: list of strings
 List of plot types to create.
 Default value: ['sfc', '500hpa', 'zonalmean']
 normalize_by_area: bool
 Set this flag to true to enable normalization of data
 by surfacea area (i.e. kg s-1 --> kg s-1 m-2).
 Default value: False
 areas: dict of xarray DataArray:
 Grid box surface areas in m2 on Ref and Dev grids.
 Default value: None
 refmet: str
 Path name for ref meteorology
 Default value: None
 devmet: str
 Path name for dev meteorology
 Default value: None
 n_job: int
 Defines the number of simultaneous workers for parallel plotting.
 Set to 1 to disable parallel plotting. Value of -1 allows the
 application to decide.
 Default value: -1
 spcdb_dir: str
 Directory of species_datbase.yml file
 Default value: Directory of GCPy code repository
 time_mean : bool
 Determines if we should average the datasets over time
 Default value: False
 """

Benchmark tabling functions

Functions creating summary tables from benchmark
 simulation output

	Function

	Type of summary table created

	make_benchmark_aerosol_tables()

	Global aerosol burdens (1yr benchmarks only)

	make_benchmark_emis_tables()

	Emissions (by species & inventory)

	make_benchmark_mass_tables()

	Total mass of each species

	make_benchmark_mass_accumulation_tables()

	Mass accumulation for each species

	make_benchmark_mass_conservation_table()

	Total mass of a single species at hourly
intervals (to check mass conservation)

	make_benchmark_oh_metrics()

	Global OH metrics (mean OH, CH4 lifetime,
methylchloroform lifetime)

	make_benchmark_operations_budget()

	Total mass of each species after each
operation (transport, mixing, etc.)

The functions listed above create summary tables for quantities such as
total mass of species, total mass of emissions, and OH metrics.

Many of these functions use pre-defined lists of variables in YAML
files. If one dataset includes a variable but the other dataset does
not, the data for that variable in the latter dataset will be
considered to be NaN and will be plotted as such.

make_benchmark_aerosol_tables

This function creates tables of global aerosol budgets and burdens from GEOS-Chem
1-year full-chemistry benchmark simulation output.

def make_benchmark_aerosol_tables(
 devdir,
 devlist_aero,
 devlist_spc,
 devlist_met,
 devstr,
 year,
 days_per_mon,
 dst='./benchmark',
 overwrite=False,
 is_gchp=False,
 spcdb_dir=os.path.dirname(__file__)
):
 """
 Compute FullChemBenchmark aerosol budgets & burdens

 Args:
 devdir: str
 Path to development ("Dev") data directory
 devlist_aero: list of str
 List of Aerosols collection files (different months)
 devlist_spc: list of str
 List of SpeciesConc collection files (different months)
 devlist_met: list of str
 List of meteorology collection files (different months)
 devstr: str
 Descriptive string for datasets (e.g. version number)
 year: str
 The year of the benchmark simulation (e.g. '2016').
 days_per_month: list of int
 List of number of days per month for all months

 Keyword Args (optional):
 dst: str
 Directory where budget tables will be created.
 Default value: './benchmark'
 overwrite: bool
 Overwrite burden & budget tables? (default=True)
 Default value: False
 is_gchp: bool
 Whether datasets are for GCHP
 Default value: False
 spcdb_dir: str
 Directory of species_datbase.yml file
 Default value: Directory of GCPy code repository

 """

make_benchmark_emis_tables

This function creates tables of emissions (by species and by
inventory) from the output of GEOS-Chem benchmark simulations.

def make_benchmark_emis_tables(
 reflist,
 refstr,
 devlist,
 devstr,
 dst="./benchmark",
 benchmark_type="FullChemBenchmark",
 refmet=None,
 devmet=None,
 overwrite=False,
 ref_interval=[2678400.0],
 dev_interval=[2678400.0],
 spcdb_dir=os.path.dirname(__file__)
):
 """
 Creates a text file containing emission totals by species and
 category for benchmarking purposes.

 Args:
 reflist: list of str
 List with the path names of the emissions file or files
 (multiple months) that will constitute the "Ref"
 (aka "Reference") data set.
 refstr: str
 A string to describe ref (e.g. version number)
 devlist: list of str
 List with the path names of the emissions file or files
 (multiple months) that will constitute the "Dev"
 (aka "Development") data set
 devstr: str
 A string to describe dev (e.g. version number)

 Keyword Args (optional):
 dst: str
 A string denoting the destination folder where the file
 containing emissions totals will be written.
 Default value: ./benchmark
 benchmark_type: str
 A string denoting the type of benchmark output to plot, options are
 FullChemBenchmark, TransportTracersBenchmark or CH4Benchmark.
 Default value: "FullChemBenchmark"
 refmet: str
 Path name for ref meteorology
 Default value: None
 devmet: str
 Path name for dev meteorology
 Default value: None
 overwrite: bool
 Set this flag to True to overwrite files in the
 destination folder (specified by the dst argument).
 Default value: False
 ref_interval: list of float
 The length of the ref data interval in seconds. By default, interval
 is set to [2678400.0], which is the number of seconds in July
 (our 1-month benchmarking month).
 Default value: [2678400.0]
 dev_interval: list of float
 The length of the dev data interval in seconds. By default, interval
 is set to [2678400.0], which is the number of seconds in July
 (our 1-month benchmarking month).
 Default value: [2678400.0]
 spcdb_dir: str
 Directory of species_datbase.yml file
 Default value: Directory of GCPy code repository

 """

make_benchmark_mass_tables

This function creates tables of total mass for species in two
different GEOS-Chem benchmark simulations.

def make_benchmark_mass_tables(
 ref,
 refstr,
 dev,
 devstr,
 varlist=None,
 dst="./benchmark",
 subdst=None,
 overwrite=False,
 verbose=False,
 label="at end of simulation",
 spcdb_dir=os.path.dirname(__file__),
 ref_met_extra=None,
 dev_met_extra=None
):
 """
 Creates a text file containing global mass totals by species and
 category for benchmarking purposes.

 Args:
 reflist: str
 Pathname that will constitute
 the "Ref" (aka "Reference") data set.
 refstr: str
 A string to describe ref (e.g. version number)
 dev: list of str
 Pathname that will constitute
 the "Dev" (aka "Development") data set. The "Dev"
 data set will be compared against the "Ref" data set.
 devstr: str
 A string to describe dev (e.g. version number)

 Keyword Args (optional):
 varlist: list of str
 List of variables to include in the list of totals.
 If omitted, then all variables that are found in either
 "Ref" or "Dev" will be included. The varlist argument
 can be a useful way of reducing the number of
 variables during debugging and testing.
 Default value: None
 dst: str
 A string denoting the destination folder where the file
 containing emissions totals will be written.
 Default value: ./benchmark
 subdst: str
 A string denoting the sub-directory of dst where PDF
 files containing plots will be written. In practice,
 subdst is only needed for the 1-year benchmark output,
 and denotes a date string (such as "Jan2016") that
 corresponds to the month that is being plotted.
 Default value: None
 overwrite: bool
 Set this flag to True to overwrite files in the
 destination folder (specified by the dst argument).
 Default value: False
 verbose: bool
 Set this flag to True to print extra informational output.
 Default value: False.
 spcdb_dir: str
 Directory of species_datbase.yml file
 Default value: Directory of GCPy code repository
 ref_met_extra: str
 Path to ref Met file containing area data for use with restart files
 which do not contain the Area variable.
 Default value: ''
 dev_met_extra: str
 Path to dev Met file containing area data for use with restart files
 which do not contain the Area variable.
 Default value: ''
 """

make_benchmark_mass_accumulation_tables

This function creates tables of mass accumulation over time for species in two
different GEOS-Chem benchmark simulations.

def create_mass_accumulation_table(
 refdatastart,
 refdataend,
 refstr,
 refperiodstr,
 devdatastart,
 devdataend,
 devstr,
 devperiodstr,
 varlist,
 met_and_masks,
 label,
 trop_only=False,
 outfilename="GlobalMassAccum_TropStrat.txt",
 verbose=False,
 spcdb_dir=os.path.dirname(__file__)
):
 """
 Creates a table of global mass accumulation for a list of species in
 two data sets. The data sets, which typically represent output from two
 different model versions, are usually contained in netCDF data files.

 Args:
 refdatastart: xarray Dataset
 The first data set to be compared (aka "Reference").
 refdataend: xarray Dataset
 The first data set to be compared (aka "Reference").
 refstr: str
 A string that can be used to identify refdata
 (e.g. a model version number or other identifier).
 refperiodstr: str
 Ref simulation period start and end
 devdatastart: xarray Dataset
 The second data set to be compared (aka "Development").
 devdataend: xarray Dataset
 The second data set to be compared (aka "Development").
 devstr: str
 A string that can be used to identify the data set specified
 by devfile (e.g. a model version number or other identifier).
 devperiodstr: str
 Ref simulation period start and end
 varlist: list of strings
 List of species concentation variable names to include
 in the list of global totals.
 met_and_masks: dict of xarray DataArray
 Dictionary containing the meterological variables and
 masks for the Ref and Dev datasets.
 label: str
 Label to go in the header string. Can be used to
 pass the month & year.

 Keyword Args (optional):
 trop_only: bool
 Set this switch to True if you wish to print totals
 only for the troposphere.
 Default value: False (i.e. print whole-atmosphere totals).
 outfilename: str
 Name of the text file which will contain the table of
 emissions totals.
 Default value: "GlobalMass_TropStrat.txt"
 verbose: bool
 Set this switch to True if you wish to print out extra
 informational messages.
 Default value: False
 spcdb_dir: str
 Directory of species_datbase.yml file
 Default value: Directory of GCPy code repository

 Remarks:
 This method is mainly intended for model benchmarking purposes,
 rather than as a general-purpose tool.

 Species properties (such as molecular weights) are read from a
 YAML file called "species_database.yml".
 """

make_benchmark_mass_conservation_table

This function creates a timeseries table of the global mass of the
PassiveTracer species. Usually used with output from
1-year TransportTracers benchmark simulations.

def make_benchmark_mass_conservation_table(
 datafiles,
 runstr,
 dst="./benchmark",
 overwrite=False,
 areapath=None,
 spcdb_dir=os.path.dirname(__file__)
):
 """
 Creates a text file containing global mass of the PassiveTracer
 from Transport Tracer simulations across a series of restart files.

 Args:
 datafiles: list of str
 Path names of restart files.
 runstr: str
 Name to put in the filename and header of the output file
 refstr: str
 A string to describe ref (e.g. version number)
 dev: str
 Path name of "Dev" (aka "Development") data set file.
 The "Dev" data set will be compared against the "Ref" data set.
 devmet: list of str
 Path name of dev meteorology data set.
 devstr: str
 A string to describe dev (e.g. version number)

 Keyword Args (optional):
 dst: str
 A string denoting the destination folder where the file
 containing emissions totals will be written.
 Default value: "./benchmark"
 overwrite: bool
 Set this flag to True to overwrite files in the
 destination folder (specified by the dst argument).
 Default value: False
 areapath: str
 Path to a restart file containing surface area data.
 Default value: None
 spcdb_dir: str
 Path to the species_database.yml
 Default value: points to gcpy/gcpy folder
 """

make_benchmark_oh_metrics

This function generates a table of OH metrics from GEOS-Chem benchmark
simulation output.

def make_benchmark_oh_metrics(
 ref,
 refmet,
 refstr,
 dev,
 devmet,
 devstr,
 dst="./benchmark",
 overwrite=False,
):
 """
 Creates a text file containing metrics of global mean OH, MCF lifetime,
 and CH4 lifetime for benchmarking purposes.

 Args:
 ref: str
 Path name of "Ref" (aka "Reference") data set file.
 refmet: str
 Path name of ref meteorology data set.
 refstr: str
 A string to describe ref (e.g. version number)
 dev: str
 Path name of "Dev" (aka "Development") data set file.
 The "Dev" data set will be compared against the "Ref" data set.
 devmet: list of str
 Path name of dev meteorology data set.
 devstr: str
 A string to describe dev (e.g. version number)

 Keyword Args (optional):
 dst: str
 A string denoting the destination folder where the file
 containing emissions totals will be written.
 Default value: "./benchmark"
 overwrite: bool
 Set this flag to True to overwrite files in the
 destination folder (specified by the dst argument).
 Default value: False
 """

make_benchmark_operations_budget

Creates a table with the change in species mass after each GEOS-Chem
operation, using output from GEOS-Chem benchmark simulations.

def make_benchmark_operations_budget(
 refstr,
 reffiles,
 devstr,
 devfiles,
 ref_interval,
 dev_interval,
 benchmark_type=None,
 label=None,
 col_sections=["Full", "Trop", "PBL", "Strat"],
 operations=[
 "Chemistry", "Convection", "EmisDryDep",
 "Mixing", "Transport", "WetDep"
],
 compute_accum=True,
 compute_restart=False,
 require_overlap=False,
 dst='.',
 species=None,
 overwrite=True,
 verbose=False,
 spcdb_dir=os.path.dirname(__file__)
):
 """
 Prints the "operations budget" (i.e. change in mass after
 each operation) from a GEOS-Chem benchmark simulation.

 Args:
 refstr: str
 Labels denoting the "Ref" versions
 reffiles: list of str
 Lists of files to read from the "Ref" version.
 devstr: str
 Labels denoting the "Dev" versions
 devfiles: list of str
 Lists of files to read from "Dev" version.
 interval: float
 Number of seconds in the diagnostic interval.

 Keyword Args (optional):
 benchmark_type: str
 A string denoting the type of benchmark output to plot, options are
 FullChemBenchmark, TransportTracersBenchmark, or CH4Benchmark.
 Default value: None
 label: str
 Contains the date or date range for each dataframe title.
 Default value: None
 col_sections: list of str
 List of column sections to calculate global budgets for. May
 include Strat eventhough not calculated in GEOS-Chem, but Full
 and Trop must also be present to calculate Strat.
 Default value: ["Full", "Trop", "PBL", "Strat"]
 operations: list of str
 List of operations to calculate global budgets for. Accumulation
 should not be included. It will automatically be calculated if
 all GEOS-Chem budget operations are passed and optional arg
 compute_accum is True.
 Default value: ["Chemistry","Convection","EmisDryDep",
 "Mixing","Transport","WetDep"]
 compute_accum: bool
 Optionally turn on/off accumulation calculation. If True, will
 only compute accumulation if all six GEOS-Chem operations budgets
 are computed. Otherwise a message will be printed warning that
 accumulation will not be calculated.
 Default value: True
 compute_accum: bool
 Optionally turn on/off accumulation calculation. If True, will
 only compute accumulation if all six GEOS-Chem operations budgets
 are computed. Otherwise a message will be printed warning that
 accumulation will not be calculated.
 Default value: True
 compute_restart: bool
 Optionally turn on/off calculation of mass change based on restart
 file. Only functional for "Full" column section.
 Default value: False
 require_overlap: bool
 Whether to calculate budgets for only species that are present in
 both Ref or Dev.
 Default value: False
 dst: str
 Directory where plots & tables will be created.
 Default value: '.' (directory in which function is called)
 species: list of str
 List of species for which budgets will be created.
 Default value: None (all species)
 overwrite: bool
 Denotes whether to overwrite existing budget file.
 Default value: True
 verbose: bool
 Set this switch to True if you wish to print out extra
 informational messages.
 Default value: False
 """
 ""

 Six Panel Plotting

Six Panel Plotting

This example script may also be found at gcpy/exampls/plotting/plot_comparisons.py [https://github.com/geoschem/gcpy/blob/feature/plot-subdir/gcpy/examples/plotting/plot_comparisons.py].

#!/usr/bin/env python
"""
Six Panel Comparison Plots

This example script demonstrates the comparitive plotting
capabilities of GCPy, including single level plots as well as
global zonal mean plots. These comparison plots are frequently
used to evaluate results from different runs / versions of
GEOS-Chem, but can also be used to compare results from different
points in one run that are stored in separate xarray datasets.

The example data described here is in lat/lon format, but the same
code works equally well for cubed-sphere (GCHP) data.
"""
import xarray as xr
import matplotlib.pyplot as plt
from gcpy.constants import skip_these_vars
from gcpy.plot.compare_single_level import compare_single_level
from gcpy.plot.compare_zonal_mean import compare_zonal_mean

def main():
 """
 Example function to create six-panel comparison plots.
 """

 # xarray allows us to read in any NetCDF file, the format of
 # GEOS-Chem diagnostics, #as an xarray Dataset
 #
 # The skip_these_vars list avoids trying to read certain
 # GCHP variables that cause data read issues.
 ref_ds = xr.open_dataset(
 'first_run/GEOSChem.Restart.20160801_0000z.nc4',
 drop_variables=skip_these_vars
)
 dev_ds = xr.open_dataset(
 'second_run/GEOSChem.Restart.20160801_0000z.nc4',
 drop_variables=skip_these_vars
)

 # ==================
 # Single level plots
 # ==================

 # compare_single_level generates sets of six panel plots for
 # data at a specified level in your datasets. By default, the
 # level at index 0 (likely the surface) is plotted. Here we will
 # plot data at ~500 hPa, which is located at index 21 in the
 # standard 72-level and 47-level GMAO vertical grids.
 ilev=21

 # You likely want to look at the same variables across both of
 # your datasets. If a variable is in one dataset but not the other,
 # the plots will show NaN values for the latter. You can pass
 # variable names in a list to these comparison plotting functions
 # (otherwise all variables will plot).
 varlist = ['SpeciesRst_O3', 'SpeciesRst_CO2']

 # compare_single_level has many arguments which can be optionally
 # specified. The first four arguments are required. They specify
 # your first xarray Dataset, the name of your first dataset,
 # your second xarray Dataset, and the name of your second dataset.
 # Here we will also pass a specific level and the names of the
 # variables you want to plot.
 compare_single_level(
 ref_ds,
 'Dataset 1',
 dev_ds,
 'Dataset 2',
 ilev=ilev,
 varlist=varlist
)
 plt.show()

 # Using plt.show(), you can view the plots interactively.
 # You can also save out the plots to a PDF.
 compare_single_level(
 ref_ds,
 'Dataset 1',
 dev_ds,
 'Dataset 2',
 ilev=ilev,
 varlist=varlist,
 pdfname='single_level.pdf'
)

 # ==================
 # Zonal Mean Plots
 # ==================

 # compare_zonal_mean generates sets of six panel plots containing
 # zonal mean data across your dataset. compare_zonal_mean shares
 # many of the same arguments as compare_single_level. You can
 # specify pressure ranges in hPa for zonal mean plotting (by
 # default every vertical level is plotted)
 compare_zonal_mean(
 ref_ds,
 'Dataset 1',
 dev_ds,
 'Dataset 2',
 pres_range=[0, 100],
 varlist=varlist,
 pdfname='zonal_mean.pdf'
)

Only execute when we run as a standalone script
if __name__ == '__main__':
 main()

 Single Panel Plotting

 This example script may also be found at gcpy/examples/plotting/plot_single_panel.py [https://github.com/geoschem/gcpy/blob/feature/plot-subdir/gcpy/examples/plotting/plot_single_panel.py].

Single Panel Plotting

#!/usr/bin/env python
"""
Global and Regional Single Panel Plots

This example script demonstrates the core single panel plotting
capabilities of GCPy, including global and regional single level plots
as well as global zonal mean plots.

The example data described here is in lat/lon format, but the same code
works equally well for cubed-sphere (GCHP) data.

For full documentation on the plotting capabilities of GCPy
(including full argument lists), please see the GCPy documentation
at https://gcpy.readthedocs.io.
"""
import xarray as xr
import matplotlib.pyplot as plt
from gcpy.plot.single_panel import single_panel

def main():
 """
 Example routine to create single panel plots.
 """

 # xarray allows us to read in any NetCDF file, the format of
 # GEOS-Chem diagnostics as an xarray Dataset
 dset = xr.open_dataset('GEOSChem.Restart.20160701_0000z.nc4')

 # You can easily view the variables available for plotting
 # using xarray. Each of these variables has its own xarray
 # DataArray within the larger Dataset container.
 print(dset.data_vars)

 # Most variables have some sort of prefix; in this example all
 # variables are prefixed with 'SpeciesRst_'. We'll select the
 # DataArray for ozone.
 darr = dset.SpeciesRst_O3

 # Printing a DataArray gives a summary of the dimensions and attributes
 # of the data.
 print(darr)

 # This Restart file has a time dimension of size 1, with 72 vertical levels,
 #46 latitude indicies, and 72 longitude indices.

 # ==================
 # Single-level Plots
 # ==================

 # gcpy.single_panel is the core plotting function of GCPy, able to
 # create a one panel zonal mean or single level plot. Here we will
 # create a single level plot of ozone at ~500 hPa. We must manually
 # index into the level that we want to plot (index 22 in the standard
 # 72-layer and 47-layer GMAO vertical grids).
 slice_500 = darr.isel(lev=22)

 # single_panel has many arguments which can be optionally specified.
 # The only argument you must always pass to a call to single_panel is
 # the DataArray that you want to plot. By default, the created plot
 # includes a colorbar with units read from the DataArray, an
 # automatic title (the data variable name in the DataArray), and
 # an extent equivalent to the full lat/lon extent of the DataArray
 single_panel(slice_500)
 plt.show()

 #You can specify a specific area of the globe you would like plotted
 # using the 'extent' argument, which uses the format [min_longitude,
 # max_longitude, min_latitude, max_latitude] with bounds
 # [-180, 180, -90, 90]
 single_panel(slice_500, extent=[50, -90, -10, 60])
 plt.show()

 # Other commonly used arguments include specifying a title and a
 # colormap (defaulting to a White-Green-Yellow-Red colormap)
 #You can find more colormaps at
 # https://matplotlib.org/tutorials/colors/colormaps.html
 single_panel(
 slice_500,
 title='500mb Ozone over the North Pacific',
 comap=plt.get_cmap("viridis"),
 log_color_scale=True,
 extent=[80, -90, -10, 60]
)
 plt.show()

 # ===================
 # Zonal Mean Plotting
 # ===================

 # Use the plot_type argument to specify zonal_mean plotting
 single_panel(
 darr,
 plot_type="zonal_mean"
)
 plt.show()

 #You can specify pressure ranges in hPa for zonal mean plot
 # (by default every vertical level is plotted)
 single_panel(
 darr,
 pres_range=[0, 100],
 log_yaxis=True,
 log_color_scale=True
)
 plt.show()

Only execute when we run as a standalone script
if __name__ == '__main__':
 main()

 Plot Timeseries

Plot Timeseries

This example script may also be found at gcpy/examples/plotting/plot_single_panel.py [https://github.com/geoschem/gcpy/blob/feature/plot-subdir/gcpy/examples/timeseries/plot_timeseries.py].

#!/usr/bin/env python
'''
Example of plotting timeseries data from GEOS-Chem and saving
the output to a PDF file. You can modify this for your particular
diagnostic output. This also contains a good overview of

This example script creates a PDF file with 2 pages.

 Page 1:

 O3 from the first model layer (from the "SpeciesConc"
 diagnostic collection is) plotted in blue.

 O3 at 10 meter height (from the "SpeciesConc_10m"
 diagnostic collection) is plotted in red.

 Page 2:

 HNO3 from the first model layer (from the SpeciesConc
 diagnostic collection is) plotted in blue.

 HNO3 at 10 meter height (from the SpeciesConc_10m
 diagnostic collection) is plotted in red.

You can of course modify this for your own particular applications.

Author:

Bob Yantosca
yantosca@seas.harvard.edu
23 Aug 2019
'''

Imports
import os
import warnings
import numpy as np
import matplotlib.dates as mdates
import matplotlib.ticker as mticker
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import xarray as xr
from gcpy import constants

Tell matplotlib not to look for an X-window, as we are plotting to
a file and not to the screen. This will avoid some warning messages.
os.environ['QT_QPA_PLATFORM'] = 'offscreen'

Suppress harmless run-time warnings (mostly about underflow in division)
warnings.filterwarnings('ignore', category=RuntimeWarning)
warnings.filterwarnings('ignore', category=UserWarning)

def find_files_in_dir(path, substrs):
 '''
 Returns a list of all files in a directory that match one or more
 substrings.

 Args:

 path : str
 Path to the directory in which to search for files.

 substrs : list of str
 List of substrings used in the search for files.

 Returns:

 file_list : list of str
 List of files in the directory (specified by path)
 that match all substrings (specified in substrs).
 '''

 # Initialize
 file_list = []

 # Walk through the given data directory. Then for each file found,
 # add it to file_list if it matches text in search_list.
 for root, directory, files in os.walk(path):
 for f in files:
 for s in substrs:
 if s in f:
 file_list.append(os.path.join(root, f))

 # Return an alphabetically sorted list of files
 file_list.sort()
 return file_list

def find_value_index(seq, val):
 '''
 Finds the index of a numpy array that is close to a value.

 Args:

 seq : numpy ndarray
 An array of numeric values.

 val : number
 The value to search for in seq.

 Returns:

 result : integer
 The index of seq that has a value closest to val.

 Remarks:

 This algorithm was found on this page:
 https://stackoverflow.com/questions/48900977/find-all-indexes-of-a-numpy-array-closest-to-a-value
 '''
 r = np.where(np.diff(np.sign(seq - val)) != 0)
 idx = r + (val - seq[r]) / (seq[r + np.ones_like(r)] - seq[r])
 idx = np.append(idx, np.where(seq == val))
 idx = np.sort(idx)
 result = np.round(idx)

 # NOTE: xarray needs integer values, so convert here!
 return int(result[0])

def read_geoschem_data(path, collections):
 '''
 Returns an xarray Dataset containing timeseries data.

 Args:

 path : str
 Directory path where GEOS-Chem diagnostic output
 files may be found.

 collections: list of str
 List of GEOS-Chem collections. Files for these
 collections will be read into the xarray Dataset.

 Returns:

 ds : xarray Dataset
 A Dataset object containing the GEOS-Chem diagnostic
 output corresponding to the collections that were
 specified.
 '''

 # Get a list of variables that GCPy should not read.
 # These are mostly variables introduced into GCHP with the MAPL v1.0.0
 # update. These variables contain either repeated or non-standard
 # dimensions that can cause problems in xarray when combining datasets.
 skip_vars = constants.skip_these_vars

 # Find all files in the given
 file_list = find_files_in_dir(path, collections)

 # Return a single xarray Dataset containing data from all files
 # NOTE: Need to add combine="nested" for xarray 0.15 and higher
 v = xr.__version__.split(".")
 if int(v[0]) == 0 and int(v[1]) >= 15:
 return xr.open_mfdataset(file_list,
 drop_variables=skip_vars,
 combine="nested",
 concat_dim=None)
 else:
 return xr.open_mfdataset(file_list,
 drop_variables=skip_vars)

def plot_timeseries_data(ds, site_coords):
 '''
 Plots a timseries of data at a given (lat,lon) location.

 Args:

 ds : xarray Dataset
 Dataset containing GEOS-Chem timeseries data.

 site_coords : tuple
 Contains the coordinate (lat, lon) of a site location
 at which the timeseries data will be plotted.
 '''

 # --
 # Get the GEOS-Chem data for O3 and HNO3 corresponding to the
 # location of the observational station. We will save these into
 # xarray DataArray objects, which we'll need for plotting.
 #
 # YOU CAN EDIT THIS FOR YOUR OWN PARTICULAR APPLICATION!
 # --

 # Find the indices corresponding to the site lon and lat
 lat_idx = find_value_index(ds.lat.values, site_coords[0])
 lon_idx = find_value_index(ds.lon.values, site_coords[1])

 # Save O3 from the first level (~60m height) (ppb) into a DataArray
 O3_L1 = ds['SpeciesConc_O3'].isel(lon=lon_idx, lat=lat_idx, lev=0)
 O3_L1 *= 1.0e9
 O3_L1.attrs['units'] = 'ppbv'

 # Save O3 @ 10m height into a DataArray
 O3_10m = ds['SpeciesConc10m_O3'].isel(lon=lon_idx, lat=lat_idx)
 O3_10m *= 1.0e9
 O3_10m.attrs['units'] = 'ppbv'

 # Save HNO3 from the first level (~60m height) into a DataArray
 HNO3_L1 = ds['SpeciesConc_HNO3'].isel(lon=lon_idx, lat=lat_idx, lev=0)
 HNO3_L1 *= 1.0e9
 HNO3_L1.attrs['units'] = 'ppbv'

 # Save HNO3 @ 10m height into a DataArray
 HNO3_10m = ds['SpeciesConc10m_HNO3'].isel(lon=lon_idx, lat=lat_idx)
 HNO3_10m *= 1.0e9
 HNO3_10m.attrs['units'] = 'ppbv'

 # --
 # Create a PDF file of the plots
 # --

 # Get min & max days of the plot span (for setting the X-axis range).
 # To better center the plot, add a cushion of 12 hours on either end.
 time = ds['time'].values
 datemin = np.datetime64(time[0]) - np.timedelta64(12, 'h')
 datemax = np.datetime64(time[-1]) + np.timedelta64(12, 'h')

 # Define a PDF object so that we can save the plots to PDF
 pdf = PdfPages('O3_and_HNO3.pdf')

 # Loop over number of desired pages (in this case, 2)
 for i in range(0, 2):

 # Create a new figure: 1 plot per page, 2x as wide as high
 figs, ax0 = plt.subplots(1, 1, figsize=[12, 6])

 # -----------------------------
 # Plot O3 on the first page
 # -----------------------------
 if i == 0:

 # 1st model level
 O3_L1.plot.line(ax=ax0, x='time', color='blue',
 marker='o', label='O3 from 1st model level',
 linestyle='-')

 # 10 mheight
 O3_10m.plot.line(ax=ax0, x='time', color='red',
 marker='x', label='O3 at 10m height',
 linestyle='-')

 # Set title (has to be after the line plots are drawn)
 ax0.set_title('O3 from the 1st model level and at 10m height')

 # Set Y-axis minor tick marks at every 2 ppb (5 intervals)
 ax0.yaxis.set_minor_locator(mticker.AutoMinorLocator(5))

 # Set y-axis title
 ax0.set_ylabel('O3 (ppbv)')

 # -----------------------------
 # Plot HNO3 on the second page
 # -----------------------------
 if i == 1:

 # 1st model level
 HNO3_L1.plot.line(ax=ax0, x='time', color='blue',
 marker='o', label='HNO3 from 1st model level',
 linestyle='-')

 # 10m height
 HNO3_10m.plot.line(ax=ax0, x='time', color='red',
 marker='x', label='HNO3 at 10m height',
 linestyle='-')

 # Set title (has to be after the line plots are drawn
 ax0.set_title('HNO3 from the 1st model level and at 10m height')

 # Set Y-axis minor tick marks at every 0.05 ppb (4 intervals)
 ax0.yaxis.set_minor_locator(mticker.AutoMinorLocator(4))

 # Set y-axis title
 ax0.set_ylabel('HNO3 (ppbv)')

 # -----------------------------
 # Set general plot parameters
 # -----------------------------

 # Add the plot legend
 ax0.legend()

 # Set the X-axis range
 ax0.set_xlim(datemin, datemax)

 # Set the X-axis major tickmarks
 locator = mdates.DayLocator()
 formatter = mdates.DateFormatter('%d')
 ax0.xaxis.set_major_locator(locator)
 ax0.xaxis.set_major_formatter(formatter)

 # Set X-axis minor tick marks at noon of each day
 # (i.e. split up the major interval into 2 bins)
 ax0.xaxis.set_minor_locator(mticker.AutoMinorLocator(2))

 # Don't rotate the X-axis jtick labels
 ax0.xaxis.set_tick_params(rotation=0)

 # Center the X-axis tick labels
 for tick in ax0.xaxis.get_major_ticks():
 tick.label1.set_horizontalalignment('center')

 # Set X-axis and Y-axis labels
 ax0.set_xlabel('Day of July (and August) 2016')

 # -----------------------------
 # Save this page to PDF
 # -----------------------------
 pdf.savefig(figs)
 plt.close(figs)

 # --
 # Save the PDF file to disk
 # --
 pdf.close()

def main():
 '''
 Main program.
 '''
 # Path where the data files live
 # (YOU MUST EDIT THIS FOR YUR OWN PARTICULAR APPLICATION!)
 path_to_data = '/path/to/GEOS-Chem/diagnostic/data/files'

 # Get a list of files in the ConcAboveSfc and SpeciesConc collections
 # (YOU CAN EDIT THIS FOR YOUR OWN PARTICULAR APPLICATION!)
 collections = ['ConcAboveSfc', 'SpeciesConc']

 # Read GEOS-Chem data into an xarray Dataset
 ds = read_geoschem_data(path_to_data, collections)

 # Plot timeseries data at Centerville, AL (32.94N, 87.18W)
 # (YOU CAN EDIT THIS FOR YOUR OWN PARTICULAR APPLICATION!)
 site_coords = (32.94, -87.18)
 plot_timeseries_data(ds, site_coords)

if __name__ == "__main__":
 main()

 Contributing Guidelines

Contributing Guidelines

Thank you for looking into contributing to GCPy! GEOS-Chem is a grass-roots model that relies on contributions from community members like you. Whether you’re new to GEOS-Chem or a longtime user, you’re a valued member of the community, and we want you to feel empowered to contribute.

We use GitHub and ReadTheDocs

We use GitHub to host the GCPy source code, to track issues, user questions, and feature requests, and to accept pull requests: https://github.com/geoschem/gcpy. Please help out as you can in response to issues and user questions.

GCPy documentation can be found at gcpy.readthedocs.io [https://gcpy.readthedocs.io].

When should I submit updates?

Submit bug fixes right away, as these will be given the highest priority. Please see “Support Guidelines” for more information.

The practical aspects of submitting code updates are listed below.

How can I submit updates?

We use GitHub Flow [https://guides.github.com/introduction/flow/index.html], so all changes happen through pull requests. This workflow is described here [https://guides.github.com/introduction/flow/index.html].

As the author you are responsible for:

	Testing your changes

	Updating the user documentation (if applicable)

	Supporting issues and questions related to your changes

Process for submitting code updates

	Create or log into your GitHub [https://github.com/] account.

	Fork the GCPy repository [https://help.github.com/articles/fork-a-repo/] into your Github account.

	Clone your fork of the GCPy repositories to your computer system.

	Add your modifications into a new branch [https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell] off the main branch.

	Test your update thoroughly and make sure that it works.

	Review the coding conventions and checklists for code and data updates listed below.

	Create a pull request in GitHub [https://help.github.com/articles/creating-a-pull-request/].

	The GEOS-Chem Support Team [https://wiki.geos-chem.org/GEOS-Chem_Support_Team] will add your updates into the development branch for an upcoming GCPy version.

	If the benchmark simulations reveal a problem with your update, the GCST will request that you take further corrective action.

Coding conventions

GCPy includes contributions from many people and multiple organizations. Therefore, some inconsistent conventions are inevitable, but we ask that you do your best to be consistent with nearby code.

Checklist for submitting code updates

	Include thorough comments in all submitted code.

	Include full citations for references at the top of relevant source code modules.

	Remove extraneous code updates (e.g. testing options, other science).

How can I request a new feature?

We accept feature requests through issues on GitHub. To request a new feature, open a new issue [https://github.com/geoschem/gcpy/issues/new/choose] and select the feature request template. Please include all the information that migth be relevant, including the motivation for the feature.

How can I report a bug?

Please see Support Guidelines [https://gcpy.readthedocs.io/en/stable/reference/SUPPORT.html].

Where can I ask for help?

Please see Support Guidelines [https://gcpy.readthedocs.io/en/stable/reference/SUPPORT.html]

 Support Guidelines

Support Guidelines

GCPy support is maintained by the GEOS-Chem Support Team (GCST), which is based jointly at Harvard University and Washington University in St. Louis.

We track bugs, user questions, and feature requests through GitHub issues [https://www.youtube.com/watch?v=dFBhdotYVf8]. Please help out as you can in response to issues and user questions.

How to report a bug

We use GitHub to track issues. To report a bug, open a new issue [https://github.com/geoschem/gcpy/issues/new/choose]. Please include your name, institution, and all relevant information, such as simulation log files and instructions for replicating the bug.

Where can I ask for help?

We use GitHub issues to support user questions. To ask a question, open a new issue [https://github.com/geoschem/gcpy/issues/new/choose] and select the question template. Please include your name and institution in the issue.

What type of support can I expect?

We will be happy to assist you in resolving bugs and technical issues that arise when using GCPy. User support and outreach is an important part of our mission to support the International GEOS-Chem User Community [https://geoschem.github.io/geos-chem-people-projects-map/].

Even though we can assist in several ways, we cannot possibly do everything. We rely on users being resourceful and willing to try to resolve problems on their own to the greatest extent possible.

If you have a science question rather than a technical question, you should contact the relevant GEOS-Chem Working Group(s) [https://geos-chem.seas.harvard.edu/geos-working-groups] directly. But if you do not know whom to ask, you may open a new issue (See “Where can I ask for help” above) and we will be happy to direct your question to the appropriate person(s).

How to submit changes

Please see Contributing Guidelines [https://gcpy.readthedocs.io/en/stable/reference/CONTRIBUTING.html].

How to request an enhancement

Please see Contributing Guidelines [https://gcpy.readthedocs.io/en/stable/reference/CONTRIBUTING.html].

 Editing these docs

Editing these docs

This documentation is generated with Sphinx. This page describes how to contribute to the GCPy documentation.

Quick start

You need the Sphinx Python to build (and therefore edit) this documentation. Assuming you already have Python installed,
install Sphinx:

$ pip install sphinx

To build the documentation, navigate to gcpy/docs and make the html target:

gcuser:~$ cd gcpy/docs
gcuser:~/gcpy/docs$ make html

This will generate the HTML documentation in gcpy/docs/build/html from the reST files in
gcpy/docs/source. You can view this local HTML documentation by opening
index.html in your web-browser.

Note

You can clean the documentation with make clean.

Learning reST

Writing reST can be a bit tricky at first. Whitespace matters (just like in Python), and some directives
can be easily miswritten. Two important things you should know right away are:

	Indents are 3-spaces

	“Things” are separated by 1 blank line (e.g., a list or code-block following a paragraph should be separated from the paragraph by 1 blank line)

You should keep these in mind when you’re first getting started. Dedicating an hour to learning reST
will save you time in the long-run. Below are some good resources for learning reST.

	reStructuredText primer [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html]: (single best resource; however, it’s better read than skimmed)

	Official reStructuredText reference [https://docutils.sourceforge.io/docs/user/rst/quickref.html] (there is a lot of information here)

	Presentation by Eric Holscher [https://www.youtube.com/watch?v=eWNiwMwMcr4] (co-founder of Read The Docs) at DjangoCon US 2015 (the entire presentation is good, but reST is described from 9:03 to 21:04)

	YouTube tutorial by Audrey Tavares’s [https://www.youtube.com/watch?v=DSIuLnoKLd8]

A good starting point would be Eric Holscher’s presentations followed by reading the reStructuredText primer.

Style guidelines

Important

This documentation is written in semantic markup. This is important so that the documentation
remains maintainable by the GEOS-Chem Support Team. Before contributing to this documentation,
please review our style guidelines. When editing the documentation, please refrain from using
elements with the wrong semantic meaning for aesthetic reasons. Aesthetic issues should be
addressed by changes to the theme (not changes to reST files).

For titles and headers:

	H1 titles should be underlined by # characters

	H2 headers should be underlined by - characters

	H3 headers should be underlined by ^ characters

	H4 headers should be avoided, but if necessary, they should be underlined by " characters

File paths occuring in the text should use the :literal: role.

Inline code, or references to variables in code, occuring in the text should use the :code: role.

Code snippets should use .. code-block:: <language> directive like so

.. code-block:: python

 import gcpy
 print("hello world")

The language can be “none” to omit syntax highlighting.

For command line instructions, the “console” language should be used. The $ should be used
to denote the console’s prompt. If the current working directory is relevant to the instructions,
a prompt like gcuser:~/path1/path2$ should be used.

Inline literals (such as the $ above) should use the :literal: role.

 Releasing new versions

Releasing new versions

This page describes some of the steps required for releasing new
versions of GCPy on Github, PyPi, and conda-forge.

	For clarity, update version numbers to the new release in the
following locations:

	setup.py

	gcpy/_version.py

	docs/source/conf.py

	gcpy/benchmark/run_benchmark.py

	gcpy/benchmark/modules/run_1yr_fullchem_benchmark.py

	gcpy/benchmark/modules/run_1yr_tt_benchmark.py

	Update CHANGELOG.md

	Merge dev into main

	Publish the release on Github.

	Install twine using pip install twine (if you
haven’t done this before).

	To package GCPy for publication to PyPi, run the following from the
root of your local GCPy repository:

$ conda activate gcpy_env # or whatever your conda env is named
$ python setup.py sdist bdist_wheel
$ twine check dist/*
$ run twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Enter your login credentials for test.pypi.org as
requested. Publishing to test.pypi ensures there are no issues with
packaging the new release before publication to the primary
PyPi database.

	Publish to PyPi by running run twine upload dist/*, and enter
your login information for pypi.org as requested.

	Verify the new release is visible at
https://pypi.org/project/geoschem-gcpy/ (may take a few
minutes).

	After a period of time (around an hour), you will be notified of a
new PR at https://github.com/conda-forge/geoschem-gcpy-feedstock
indicating conda-forge has detected a new release on PyPi. You
should be able to merge this PR without any additinal interference
once all checks have passed.

	Once the feedstock PR has been merged and after another period of
waiting, you should see builds for the new release when running
conda search -f geoschem-gcpy. This indicates the new
version is publicly available for installation through
conda-forge.

 Index

Index

 Symbols
 | C
 | D
 | E
 | F
 | L
 | M
 | P
 | R
 | S
 | T
 | V

Symbols

 	
 	
 --stretch-factor

 	command line option

 	
 --stretched-grid

 	command line option

 	
 	
 --target-latitude

 	command line option

 	
 --target-longitude

 	command line option

C

 	
 	
 command line option

 	--stretch-factor

 	--stretched-grid

 	--target-latitude

 	--target-longitude

 	cs_res_out

 	devdata

 	devstr

 	dim_format_in

 	dim_format_out

 	file_to_regrid

 	fin

 	fout

 	ll_res_out

 	refdata

 	refstr

 	regridding_weights_file

 	sg_params_in

 	sg_params_out

 	template_file

 	vert_params_out

 	
 	
 cs_res_out

 	command line option

D

 	
 	
 devdata

 	command line option

 	
 devstr

 	command line option

 	
 	
 dim_format_in

 	command line option

 	
 dim_format_out

 	command line option

E

 	
 	
 environment variable

 	MPLBACKEND, [1]

 	PYTHONPATH, [1], [2], [3]

F

 	
 	
 file_to_regrid

 	command line option

 	
 fin

 	command line option

 	
 	
 fout

 	command line option

L

 	
 	
 ll_res_out

 	command line option

M

 	
 	MPLBACKEND, [1]

P

 	
 	PYTHONPATH, [1], [2], [3]

R

 	
 	
 refdata

 	command line option

 	
 refstr

 	command line option

 	
 	
 regridding_weights_file

 	command line option

S

 	
 	
 sg_params_in

 	command line option

 	
 	
 sg_params_out

 	command line option

T

 	
 	
 template_file

 	command line option

V

 	
 	
 vert_params_out

 	command line option

_static/images/GEOS-Chem_Logo_Light_Background.png

_static/images/budget_table.png
03 budgets (Ref=GCC_re:
Full [Gg] : 03

+ +
| operation | Ret | Dev | Diff | Per_aiff |
1 -1
Chemistry	41393.33303	34800.44074	-6592.89729	-15.92744
Convection	0.00000	0.00000	-0.00000	-6.18451
EmisbryDep	0.00000	0.00000	0.00000	17.06633
Mixing	-83088.48780	-74688.11516	8400.37264	-10.11015
Transporc	-0.01046	0.01046	0.02092	-200.00000
WetDep 1 0.00000	0.00000	0.00000	nan 1	
ACCUMDLATION	-41695.16023	-39887.66396	1807.49627	-4.33503
+ +
Trop [Ggl : 03

+ +
| operation | Ret | Dev | Diff | Per_aiff |
1 -1
Chemistry	18097.88079	11089.77003	-7008.11076	~-38.72338
Convection	2.77553	2.7747¢	-0.00078	-0.02813
EmisbryDep	~0.00000	~0.00000	0.00000	-0.38156
Mixing	-82099.95841	-73705.00112	8394.95829	-10.22529
Tramsport	20982.73207	20983.32321	0.59113	0.00282
WetDep 1 0.00000	0.00000	0.00000	nan 1	
ACCUMULATION	-43016.57102	-41629.13313	1387.43788	-3.22536
+ +
PBL [Gg]

+ +
| operation | Ret | Dev | Diff | Per_aiff |
1 -1
Chemistry	45741.43271	41289.98684	-4451.44587	-9.73176
Convection	18311.38772	16140.66615	-2170.72157	-11.85449
EmisbryDep	0.00000	-0.00000	-0.00000	-486.12447
Mixing	-57018.97192	-51308.50804	$710.46389	-10.01502
Tramsport	7001.44157	7208.49510	207.05353	2.95730
WetDep 1 0.00000	0.00000	0.00000	nan 1	
ACCUMULATION	14035.29008	13330.64005	~-704.65003	-5.02056
+ +

strat [Gg] : 03

+
| operation | Ret | Dev | Diff | Per_aiff |
1 1
Chemistry	23295.45724	23710.67070	415.21347	1.78238
Convection	—2.77853	-2.77474	0.00078	-0.02813
EmisbryDep	0.00000	0.00000	0.00000	5.60751
Mixing	-988.52835	-983.11404	5.41433	-0.54772
Tramsport	-20982.74254	-20983.31274	-0.57021	0.00272
WetDep 1 0.00000	0.00000	0.00000	nan 1	
ACCUMULATION	1321.41079	1741.4617	420.05838	31.78863
+-

_static/images/mass_table.png
Global mass (Gg) at end of simulation (Trop + Strat)

#3# Ref = GCC_ref; Dev = GCC_dev ##
B L o T T T P T P e

Ref Dev Dev - Ref % diff
nsoz : 0.056341 0.052588 -0.004253 -7.482
cET 16001.018555 15645.326630 -351.671875 -2.19%
acTa : 317.521271 352.631622 35.110352 11.058
hERT 5.389944 5.468935 0.079041 1.266
LD2 €72.609202 567.048320 -105.561462 -15.69¢
Lk 1706.307495 1642.650757 —es.gse738 -3.731
nsoa1 5.933125 5.857670 -0.075455 -1.272
nsonz 2.005105 1.s81018 -0.024087 -1.201
nsons 4.506812 4.425095 -0.081717 -1.813
nsoan 24.589061 45.198995 0.30793¢ 0.626
nsoc1 4.382629 4.288445 -0.096180 -2.194
nsocz : 5.751007 5.613772 -0.137235 -2.386
nsocs 20.260902 78.845200 -1.415703 -1.76¢
nTo2 : 0.253885 0.23713¢ -0.016755 -6.59%
nToon 162.958115 170.316208 7.358093 a.515
5302 0.214048 0.199918 -0.014125 -6.599
sceT s1.024101 s1.024101 0.000000 0.000
sceo 20.18658¢ 20.18658¢ 0.000000 0.000
BNz 1185.683838 1117.738281 -30.945557 -2.69¢
=RO2 0.065830 0.067338 0.001458 2.214
B 1.53966¢ 1.534200 -0.00546¢ -0.355
B2 1.54736¢ 1.487761 -0.0s960¢ -3.852
Bzc1 : 13.761661 13.721767 -0.039893 -0.290
BrNo2 0.341235 0.333092 -0.00814¢ -2.387
BzN03 : 27.480032 27.323025 -0.157007 -0.571
B0 14.111503 14.090150 -0.021353 -0.151
Brsain 0.111132 0.09368¢8 -0.017426 -15.69%

BrsaLC 0.431045 0.360122 -0.070923 -16.454

_images/budget_table.png
03 budgets (Ref=GCC_re:
Full [Gg] : 03

+ +
| operation | Ret | Dev | Diff | Per_aiff |
1 -1
Chemistry	41393.33303	34800.44074	-6592.89729	-15.92744
Convection	0.00000	0.00000	-0.00000	-6.18451
EmisbryDep	0.00000	0.00000	0.00000	17.06633
Mixing	-83088.48780	-74688.11516	8400.37264	-10.11015
Transporc	-0.01046	0.01046	0.02092	-200.00000
WetDep 1 0.00000	0.00000	0.00000	nan 1	
ACCUMDLATION	-41695.16023	-39887.66396	1807.49627	-4.33503
+ +
Trop [Ggl : 03

+ +
| operation | Ret | Dev | Diff | Per_aiff |
1 -1
Chemistry	18097.88079	11089.77003	-7008.11076	~-38.72338
Convection	2.77553	2.7747¢	-0.00078	-0.02813
EmisbryDep	~0.00000	~0.00000	0.00000	-0.38156
Mixing	-82099.95841	-73705.00112	8394.95829	-10.22529
Tramsport	20982.73207	20983.32321	0.59113	0.00282
WetDep 1 0.00000	0.00000	0.00000	nan 1	
ACCUMULATION	-43016.57102	-41629.13313	1387.43788	-3.22536
+ +
PBL [Gg]

+ +
| operation | Ret | Dev | Diff | Per_aiff |
1 -1
Chemistry	45741.43271	41289.98684	-4451.44587	-9.73176
Convection	18311.38772	16140.66615	-2170.72157	-11.85449
EmisbryDep	0.00000	-0.00000	-0.00000	-486.12447
Mixing	-57018.97192	-51308.50804	$710.46389	-10.01502
Tramsport	7001.44157	7208.49510	207.05353	2.95730
WetDep 1 0.00000	0.00000	0.00000	nan 1	
ACCUMULATION	14035.29008	13330.64005	~-704.65003	-5.02056
+ +

strat [Gg] : 03

+
| operation | Ret | Dev | Diff | Per_aiff |
1 1
Chemistry	23295.45724	23710.67070	415.21347	1.78238
Convection	—2.77853	-2.77474	0.00078	-0.02813
EmisbryDep	0.00000	0.00000	0.00000	5.60751
Mixing	-988.52835	-983.11404	5.41433	-0.54772
Tramsport	-20982.74254	-20983.31274	-0.57021	0.00272
WetDep 1 0.00000	0.00000	0.00000	nan 1	
ACCUMULATION	1321.41079	1741.4617	420.05838	31.78863
+-

_static/images/single_panel_single_level.png
Surface Ozone over the North Pacific

25 5.0 75
mol mol-1 dry le-8

_static/images/emissions_totals.png
e
e
##
ST T R

Emissions totals for species ALD2
Ref = GCC_ref; Dev = GCC_dev

Ret
ALD2 Anthro : 0.042131
ALD2 BioBurn 0.216919
ALD2 Biogenic 0.971006
ALD2 Ocean 3.080078
ALD2 PlantDecay 0.308773
ALD2 Ship 0.000000
ALD2 Total 4.681470

Dev
0.042131
0.216919
0.993452
2.799852
0.308773
0.000000

4.423330

Dev - Ref
0.000000
0.000000
0.022487
-0.280627
0.000000
0.000000

-0.258140

Tq
Tq
Tq
Tq
Tq
Tq

Tq

aaaaaa

_static/images/inventory_totals.png
R
Emissions totals for inventory GFED e

#3# Ref = GCC_ref; Dev = GCC_dev ##

B L L T T P P T PR A A

Ref Dev Dev - Ref

GFED ACET B 0.197629 0.197629 0.000000 Tg
GFED ALD2 i 0.398227 0.398227 0.000000 Tg
GFED ALK 0.087067 0.087067 0.000000 Tg
GFED BCPI 0.045671 0.045671 0.000000 Tg
GFED BCEO 0.15268¢ 0.15268¢ 0.000000 Tg
GFED BENZ 0.250281 0.250281 0.000000 Tg
GFED Cate 0.512323 0.512323 0.000000 Tg
GFED C3Es 0.105243 0.105243 0.000000 Tg
GFED CH20 0.622160 0.622160 0.000000 Tg
GFED CO 47.303405 47.303405 0.000000 Tg
cFED EoH i 0.018120 0.018120 0.000000 Tg
GFED MEX 0.132279 0.132279 0.000000 Tg
GFED 1OH i 0.984294 0.984294 0.000000 Tg
GFED NE3 0.65196¢ 0.65196¢ 0.000000 Tg
GFED NO 1.567527 1.567527 0.000000 Tg
GFED OCPI 1.232881 1.232881 0.000000 Tg
GFED OCPO 1.232881 1.232881 0.000000 Tg
GFED PREE 0.602468 0.602468 0.000000 Tg
GFED 02 0.336392 0.336392 0.000000 Tg
GFED soaP 0.614942 0.614942 0.000000 Tg
GFED TOLU 0.113818 0.113818 0.000000 Tg
GFED XYLE N 0.197629 0.197629 0.000000 Tg

_images/mass_table.png
Global mass (Gg) at end of simulation (Trop + Strat)

#3# Ref = GCC_ref; Dev = GCC_dev ##
B L o T T T P T P e

Ref Dev Dev - Ref % diff
nsoz : 0.056341 0.052588 -0.004253 -7.482
cET 16001.018555 15645.326630 -351.671875 -2.19%
acTa : 317.521271 352.631622 35.110352 11.058
hERT 5.389944 5.468935 0.079041 1.266
LD2 €72.609202 567.048320 -105.561462 -15.69¢
Lk 1706.307495 1642.650757 —es.gse738 -3.731
nsoa1 5.933125 5.857670 -0.075455 -1.272
nsonz 2.005105 1.s81018 -0.024087 -1.201
nsons 4.506812 4.425095 -0.081717 -1.813
nsoan 24.589061 45.198995 0.30793¢ 0.626
nsoc1 4.382629 4.288445 -0.096180 -2.194
nsocz : 5.751007 5.613772 -0.137235 -2.386
nsocs 20.260902 78.845200 -1.415703 -1.76¢
nTo2 : 0.253885 0.23713¢ -0.016755 -6.59%
nToon 162.958115 170.316208 7.358093 a.515
5302 0.214048 0.199918 -0.014125 -6.599
sceT s1.024101 s1.024101 0.000000 0.000
sceo 20.18658¢ 20.18658¢ 0.000000 0.000
BNz 1185.683838 1117.738281 -30.945557 -2.69¢
=RO2 0.065830 0.067338 0.001458 2.214
B 1.53966¢ 1.534200 -0.00546¢ -0.355
B2 1.54736¢ 1.487761 -0.0s960¢ -3.852
Bzc1 : 13.761661 13.721767 -0.039893 -0.290
BrNo2 0.341235 0.333092 -0.00814¢ -2.387
BzN03 : 27.480032 27.323025 -0.157007 -0.571
B0 14.111503 14.090150 -0.021353 -0.151
Brsain 0.111132 0.09368¢8 -0.017426 -15.69%

BrsaLC 0.431045 0.360122 -0.070923 -16.454

_static/images/six_panel_zonal_mean.png
SpeciesConc_

GEOS-Chem Classic (Ref)

03, Zonal Mean

GCHP (Dev)

4.0x5.0 1x1.25 regridded from c48
200 200
Kl Kl
g g
£ 400 < 400
g g
5 5
2 600 2 600
g g
& &
800 800
1000 + | 10004 |
900 -60° -30° 0 30° 60° 90° -90° 600 -30° 0 30° 60° 90°
2500 5000 7500 2500 5000 7500
ppb ppb
Difference (1x1.25) Difference (1x1.25)
Dev - Ref, Dynamic Range Dev - Ref, Restricted Range [5%,95%]
Teee T T = Ti" i ok |f“|f. IT
200 200
Kl Kl
g g
£ 400 £ 400
g g
2 600 2 600
g g
& &
800 800
1000 1000 + |
90 -60° -30° 0 30° 60° 90° -90° 60° -30° 0 30° 60° 90°
—200 4 200 -0 0 40
ppb ppb
Ratio (1x1.25) Ratio (1x1.25)
Dev/Ref, Dynamic Range Dev/Ref, Fixed Range
200 n 200
= = i 3
g g
£ 400 £ 400
g g
5 5
2 600 2 600
g g
& &
800 800
1000 1000
90° -60° -30° 0 30° 60° 90° -90° 60° -30° 0 30° 60° 90°
075 1.00 125 150 050 075 1.00 150 2.00
unitless

unitless

_images/single_panel_single_level.png
Surface Ozone over the North Pacific

25 5.0 75
mol mol-1 dry le-8

_images/emissions_totals.png
e
e
##
ST T R

Emissions totals for species ALD2
Ref = GCC_ref; Dev = GCC_dev

Ret
ALD2 Anthro : 0.042131
ALD2 BioBurn 0.216919
ALD2 Biogenic 0.971006
ALD2 Ocean 3.080078
ALD2 PlantDecay 0.308773
ALD2 Ship 0.000000
ALD2 Total 4.681470

Dev
0.042131
0.216919
0.993452
2.799852
0.308773
0.000000

4.423330

Dev - Ref
0.000000
0.000000
0.022487
-0.280627
0.000000
0.000000

-0.258140

Tq
Tq
Tq
Tq
Tq
Tq

Tq

aaaaaa

_static/images/single_panel_zonal_mean.png
Pressure (hPa)

200

400

600

800

1000

Global Zonal Mean of Ozone

-60° -30° 0 30° 60°

.0000050
mol mol-1 dry

.0000075

_images/inventory_totals.png
R
Emissions totals for inventory GFED e

#3# Ref = GCC_ref; Dev = GCC_dev ##

B L L T T P P T PR A A

Ref Dev Dev - Ref

GFED ACET B 0.197629 0.197629 0.000000 Tg
GFED ALD2 i 0.398227 0.398227 0.000000 Tg
GFED ALK 0.087067 0.087067 0.000000 Tg
GFED BCPI 0.045671 0.045671 0.000000 Tg
GFED BCEO 0.15268¢ 0.15268¢ 0.000000 Tg
GFED BENZ 0.250281 0.250281 0.000000 Tg
GFED Cate 0.512323 0.512323 0.000000 Tg
GFED C3Es 0.105243 0.105243 0.000000 Tg
GFED CH20 0.622160 0.622160 0.000000 Tg
GFED CO 47.303405 47.303405 0.000000 Tg
cFED EoH i 0.018120 0.018120 0.000000 Tg
GFED MEX 0.132279 0.132279 0.000000 Tg
GFED 1OH i 0.984294 0.984294 0.000000 Tg
GFED NE3 0.65196¢ 0.65196¢ 0.000000 Tg
GFED NO 1.567527 1.567527 0.000000 Tg
GFED OCPI 1.232881 1.232881 0.000000 Tg
GFED OCPO 1.232881 1.232881 0.000000 Tg
GFED PREE 0.602468 0.602468 0.000000 Tg
GFED 02 0.336392 0.336392 0.000000 Tg
GFED soaP 0.614942 0.614942 0.000000 Tg
GFED TOLU 0.113818 0.113818 0.000000 Tg
GFED XYLE N 0.197629 0.197629 0.000000 Tg

_static/images/six_panel_single_level.png
SpeciesConc_

GEOS-Chem Classic (Ref)
4.0x5.0

10 20 30 40 50 60 70
ppb

Difference (1x1.25)
Dev - Ref, Dynamic Range

03 (Surface)

GCHP (Dev)
c48

10 20 30 40 50 60 70

Difference (1x1.25)

Ratio (1x1.25)
Dev/Ref, Dynamic Range

Ratio (1x1.25)
Dev/Ref, Fixed Range

unitless

050

075

1.00
unitless

150 2.00

_images/single_panel_zonal_mean.png
Pressure (hPa)

200

400

600

800

1000

Global Zonal Mean of Ozone

-60° -30° 0 30° 60°

.0000050
mol mol-1 dry

.0000075

_images/six_panel_single_level.png
SpeciesConc_

GEOS-Chem Classic (Ref)
4.0x5.0

10 20 30 40 50 60 70
ppb

Difference (1x1.25)
Dev - Ref, Dynamic Range

03 (Surface)

GCHP (Dev)
c48

10 20 30 40 50 60 70

Difference (1x1.25)

Ratio (1x1.25)
Dev/Ref, Dynamic Range

Ratio (1x1.25)
Dev/Ref, Fixed Range

unitless

050

075

1.00
unitless

150 2.00

_images/six_panel_zonal_mean.png
SpeciesConc_

GEOS-Chem Classic (Ref)

03, Zonal Mean

GCHP (Dev)

4.0x5.0 1x1.25 regridded from c48
200 200
Kl Kl
g g
£ 400 < 400
g g
5 5
2 600 2 600
g g
& &
800 800
1000 + | 10004 |
900 -60° -30° 0 30° 60° 90° -90° 600 -30° 0 30° 60° 90°
2500 5000 7500 2500 5000 7500
ppb ppb
Difference (1x1.25) Difference (1x1.25)
Dev - Ref, Dynamic Range Dev - Ref, Restricted Range [5%,95%]
Teee T T = Ti" i ok |f“|f. IT
200 200
Kl Kl
g g
£ 400 £ 400
g g
2 600 2 600
g g
& &
800 800
1000 1000 + |
90 -60° -30° 0 30° 60° 90° -90° 60° -30° 0 30° 60° 90°
—200 4 200 -0 0 40
ppb ppb
Ratio (1x1.25) Ratio (1x1.25)
Dev/Ref, Dynamic Range Dev/Ref, Fixed R